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Abstract

This paper is concerned with numerical stability of nonlinear systems of pantograph
equations. Numerical methods based on (k,l)—algebraically stable Runge-Kutta methods
are suggested. Global and asymptotic stability conditions for the presented methods are
derived.
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1. Introduction

Consider the following systems of the pantograph equations
{ y'(t) = ft,y(t),y(pt)), t>0, (1.1)
y(O) =1, ne CN7 .

where f : [0,+00) x CN x CN — C¥ is a given function and p € (0,1) is a real constant. For
applications of the systems(1.1), we refer to Iserles[1].

In order to investigate the stability of numerical methods for the pantograph equations, the
scalar linear pantograph equations

y'(t) = My(t) + ny(pt),

where A\, u € C and p € (0,1) are constants, have been used as the test problem and many
significant results have been derived(cf.[2-10, 16, 17]). However, little attention has been paid to
the nonlinear case of the form (1.1). In 2002, Zhang and Sun[11] considered nonlinear stability
of one-leg §—methods for (1.1) and obtained some results of global and asymptotic stability.
On the basis of their works, the present paper further deal with numerical stability of (k,[)-
algebraically stable Runge-Kutta methods with variable stepsize (introduced by Liu[9]) for the
nonlinear systems (1.1). Global and asymptotic stability conditions for the presented methods
are derived.

2. Runge-Kutta Methods with Variable Stepsize

In this section, we consider the adaptation of Runge-Kutta methods for solving (1.1). Let
(A, b,c) denotes a given Runge-Kutta method with matrix A = (a;;) € R**® and vectors
b= (by,ba,...,b)T € R*, ¢ = (c1,¢2,...,¢5)7 € R*. In this paper, we always assume that
¢i €10,1],7=1,2,...,s. The application of the Runge-Kutta method (A, b,¢c) to (1.1) yields

Yi(n) = Yn + hn+1 E aijf(tn + th, Yj(n)ﬂ }71'(”))7 i=12...,s
j=1 (2.1)

Yn+1 = YUn + thrl Z bzf(tn + Cih, Y;(n)a 2(“))7 n = 07 17 27 ey
i=1
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where hp 11 = tht1 — tn, Yn, Yi(") and }7;-(") (n>0,i=1,2,...,s) are approximations to y(t,),
y(tn + Cihn+1) and y(p(tn + Cithrl)) respectively.

Since a serious storage problem is created when the computation for (1.1) with constant
stepsize is run on any computer, we consider a variable stepsize strategy introduced by Liu[9]
and Bellen et al.[2] to resolve the storage problem. The grid points are selected as follows(cf.
11]).

First, divide [0, +00) into a set of infinite bounded intervals, that is
[0,+00) = | J Di,
1=0

where Dy = [0,7] with a given positive number v and D; = (T;_1,T;)(I > 1) with T} = p~l~.
Then, partition every primary interval D;(I > 1) into equal m subintervals. Thus the grid
points on [0, +00)/Dy are determined by

tn = T{(n-1)/m) + (n = [(n = 1)/m|m)hn, n>1,
where | 2| denotes the maximal integer which not exceeds x. On Dy, choose ty = 7, t_(m+1) =0,
t_i =ptm_i, it =m,m—1,...,1, as grid points. The corresponding numerical solutions yq, y—_;

and Yj(_i)(i =m+1,m,...,1, j=1,2,...,s) are assumed to exist. So the function ¢(t) := pt
has these properties:

[Sl] @(tn) - tn—ma n Z 07
[S2] @(Dpy1) = Dy, n>1,
[S3] w(hn) = hp—m, n>1,
and the stepsize sequence {h,} is determined by
P, n=-m,
hy ={ 23 n=-m+1,-m+2 ...,-1,0, (2.2)
U—p)y n=1,23,....

mpl(n=D)/mIFT)
Properties [S1]-[S3] imply that the choice of grid points has removed the computational storage
problem for (1.1) and the method (2.1) can be written as

}/z(n) = Yn + hn—i—l Z aijf(tn + tha }9(”)71/}("*7’”)), i=12...,s
3=1 (2.3)

Ynt1 = Y+l 3 0if (b + h, YY) n=0,1,2,.
=1

3. Stability Analysis of the Methods

In order to study the stability of the methods (2.3), consider the perturbed systems of (1.1)

2'(t) = f(¢,2(t), z(pt)), t >0, (3.1)
2(0) =, seCN, :
Similarly, applying method (2.3) to the systems (3.1) yields
Zz(n) =Zn + hn+1 Z a/ljf(tn =+ th7 Z](”), Zj(nim))v 1= 1) 27 - S,
5 (32)
Znir = 2+ Bt 30 0if (b + b, Z00 207 n=10,1,2,. .,
i=1
where z,, and Zf") are approximations to z(t,) and z(t,, + ¢;hn4+1) respectively.
Both (1.1) and (3.1), we assume that the function f satisfies
Re(uy — ug, f(t,u1,v) — f(t,uz,v)) < allug —uall?, >0, wuy,uz,veCV, (3.3)
||f(t,U,v1)—f(t,u,v2)|| Sﬁ”vl_v2”7 t>07 U,Ul,UQECN, '
where (-,-) and || - || denote a given inner product and the corresponding norm in complex

N —dimensional space CV respectively. In the following, all systems (1.1) with (3.3) will be



