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Abstract

This paper is concerned with numerical stability of nonlinear systems of pantograph
equations. Numerical methods based on (k, l)−algebraically stable Runge-Kutta methods
are suggested. Global and asymptotic stability conditions for the presented methods are
derived.
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1. Introduction

Consider the following systems of the pantograph equations{
y′(t) = f(t, y(t), y(pt)), t > 0,
y(0) = η, η ∈ CN ,

(1.1)

where f : [0, +∞) × CN × CN → CN is a given function and p ∈ (0, 1) is a real constant. For
applications of the systems(1.1), we refer to Iserles[1].

In order to investigate the stability of numerical methods for the pantograph equations, the
scalar linear pantograph equations

y′(t) = λy(t) + µy(pt),

where λ, µ ∈ C and p ∈ (0, 1) are constants, have been used as the test problem and many
significant results have been derived(cf.[2-10, 16, 17]). However, little attention has been paid to
the nonlinear case of the form (1.1). In 2002, Zhang and Sun[11] considered nonlinear stability
of one-leg θ−methods for (1.1) and obtained some results of global and asymptotic stability.
On the basis of their works, the present paper further deal with numerical stability of (k, l)-
algebraically stable Runge-Kutta methods with variable stepsize (introduced by Liu[9]) for the
nonlinear systems (1.1). Global and asymptotic stability conditions for the presented methods
are derived.

2. Runge-Kutta Methods with Variable Stepsize

In this section, we consider the adaptation of Runge-Kutta methods for solving (1.1). Let
(A, b, c) denotes a given Runge-Kutta method with matrix A = (aij) ∈ Rs×s and vectors
b = (b1, b2, . . . , bs)

T ∈ Rs, c = (c1, c2, . . . , cs)
T ∈ Rs. In this paper, we always assume that

ci ∈ [0, 1], i = 1, 2, . . . , s. The application of the Runge-Kutta method (A, b, c) to (1.1) yields



Y
(n)
i = yn + hn+1

s∑
j=1

aijf(tn + cjh, Y
(n)
j , Ỹ

(n)
j ), i = 1, 2, . . . , s,

yn+1 = yn + hn+1

s∑
i=1

bif(tn + cih, Y
(n)
i , Ỹ

(n)
i ), n = 0, 1, 2, . . . ,

(2.1)

∗ Received December 29, 2003, final revised October 8, 2004.
1) This work is supported by the National Natural Science Foundation of China(No.10271100).



352 Y.X. YU AND S.F. LI

where hn+1 = tn+1 − tn, yn, Y
(n)
i and Ỹ

(n)
i (n ≥ 0, i = 1, 2, . . . , s) are approximations to y(tn),

y(tn + cihn+1) and y(p(tn + cihn+1)) respectively.
Since a serious storage problem is created when the computation for (1.1) with constant

stepsize is run on any computer, we consider a variable stepsize strategy introduced by Liu[9]
and Bellen et al.[2] to resolve the storage problem. The grid points are selected as follows(cf.
[11]).

First, divide [0, +∞) into a set of infinite bounded intervals, that is

[0, +∞) =

∞⋃

l=0

Dl,

where D0 = [0, γ] with a given positive number γ and Dl = (Tl−1, Tl](l ≥ 1) with Tl = p−lγ.
Then, partition every primary interval Dl(l ≥ 1) into equal m subintervals. Thus the grid
points on [0, +∞)/D0 are determined by

tn = Tb(n−1)/mc + (n − b(n − 1)/mcm)hn, n ≥ 1,

where bxc denotes the maximal integer which not exceeds x. On D0, choose t0 = γ, t−(m+1) = 0,
t−i = ptm−i, i = m, m− 1, . . . , 1, as grid points. The corresponding numerical solutions y0, y−i

and Y
(−i)
j (i = m + 1, m, . . . , 1, j = 1, 2, . . . , s) are assumed to exist. So the function ϕ(t) := pt

has these properties:

[S1] ϕ(tn) = tn−m, n ≥ 0,

[S2] ϕ(Dn+1) = Dn, n ≥ 1,

[S3] ϕ(hn) = hn−m, n ≥ 1,

and the stepsize sequence {hn} is determined by

hn =






pγ, n = −m,
(1−p)γ

m , n = −m + 1,−m + 2, . . . ,−1, 0,
(1−p)γ

mpb(n−1)/mc+1 , n = 1, 2, 3, . . . .

(2.2)

Properties [S1]-[S3] imply that the choice of grid points has removed the computational storage
problem for (1.1) and the method (2.1) can be written as




Y
(n)
i = yn + hn+1

s∑
j=1

aijf(tn + cjh, Y
(n)
j , Y

(n−m)
j ), i = 1, 2, . . . , s,

yn+1 = yn + hn+1

s∑
i=1

bif(tn + cih, Y
(n)
i , Y

(n−m)
i ), n = 0, 1, 2, . . . ,

(2.3)

3. Stability Analysis of the Methods

In order to study the stability of the methods (2.3), consider the perturbed systems of (1.1){
z′(t) = f(t, z(t), z(pt)), t > 0,
z(0) = ς, ς ∈ CN ,

(3.1)

Similarly, applying method (2.3) to the systems (3.1) yields




Z
(n)
i = zn + hn+1

s∑
j=1

aijf(tn + cjh, Z
(n)
j , Z

(n−m)
j ), i = 1, 2, . . . , s,

zn+1 = zn + hn+1

s∑
i=1

bif(tn + cih, Z
(n)
i , Z

(n−m)
i ), n = 0, 1, 2, . . . ,

(3.2)

where zn and Z
(n)
i are approximations to z(tn) and z(tn + cihn+1) respectively.

Both (1.1) and (3.1), we assume that the function f satisfies{
Re〈u1 − u2, f(t, u1, v) − f(t, u2, v)〉 ≤ α‖u1 − u2‖

2, t > 0, u1, u2, v ∈ CN ,
‖f(t, u, v1) − f(t, u, v2)‖ ≤ β‖v1 − v2‖, t > 0, u, v1, v2 ∈ CN ,

(3.3)

where 〈·, ·〉 and ‖ · ‖ denote a given inner product and the corresponding norm in complex
N−dimensional space CN respectively. In the following, all systems (1.1) with (3.3) will be


