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Abstract

This paper provides an analysis of the rotational form of the pressure-correction meth-
ods by spectral approximations for the unsteady Stokes equations. Error estimates in finite
time for the fully discrete case are given. Numerical experiences using both spectral and
spectral element methods are carried out to confirm the theoretical results.
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1. Introduction

Efficient solution of the Stokes equations is dependent upon the availability of fast solvers for
the pressure operator, as the pressure characteristic propagation speed is infinite for unsteady
incompressible flow. Generally, there are two principal ways to discretize the unsteady Stokes
equations in time. One way is to keep the velocity and the pressure coupled, and at each
time step it needs to solve the generalized Stokes problem which is the most computationally
expensive. A common technique for solving the algebraic system, stemming from discretization
of the Stokes equations, is the Uzawa algorithm. An Uzawa algorithm uses block Gaussian
elimination and back substitution for the pressure and the velocity yielding two positive definite
symmetric systems (see e.g. [19] and the references therein). This decoupling procedure has
been proven to be attractive than a direct algorithm. However the classical Uzawa algorithm
suffers from expensive solve of the pressure system as the pressure matrix involves the inverses
of the Helmholtz systems. This disadvantage could be overcome by using an additional splitting
technique. This approach has a common foundation with traditional splitting approaches which
leads to a Poisson equation for the pressure except that, in the former case, the splitting is
effected in the discrete form of the equations. Such an approach was analyzed and applied to
the various computations in the papers of Perot [21], Couzy et al. [9] and Fischer [11], but
no rigorous error estimate is available. The disadvantage of the Uzawa-based algorithm is that
a discrete form of the Ladyshenskaya-Brezzi-Babuška condition(LBB condition, [5]) must be
satisfied for obtaining the unique discrete solution. This means that for a high-order spectral
approximation, the degree of approximation for the pressure must be taken two degrees lower
than that for the velocity [20]. It is the so called PN ×PN−2 method. There exist some methods
that make use other space pairs than PN ×PN−2, we refer to [6] for detailed description of these
methods.

Another way to discretize the continuous unsteady Stokes equations is provided by the class
of projection methods. This class of approaches has been introduced by Chorin [7, 8] and
Temam [28]. They are based on a particular time-discretization of the equations governing
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viscous incompressible flows, in which the viscosity and the incompressibility of the fluid are
dealt within two separate steps. By doing that, the original problem is reformulated into two
new and simpler problems. The theory of saddle-point problems is then no longer needed, that
is to say, the LBB condition is not needed; as a consequence, the degree of approximation for
the velocity and the pressure can be taken the same, yielding a simpler-to-implement numerical
scheme.

The projection algorithm can be interpreted as a predictor-corrector strategy, which can be
essentially classed into two families: classical fractional step methods and pressure-correction
methods. The classical fractional step methods have only first order convergence rate due to
the fact that it is basically an artificial compressibility technique [24, 25]. Different choices of
the pressure boundary condition have been discussed to improve the efficiency of this kind of
methods (see [17] for instance). The pressure-correction methods consist of two time substeps:
first we make the pressure explicit in the convection-diffusion step, and then compute its incre-
ment (correction) in the projection step. Second-order Error estimates in the L2-norm for the
velocity have been proved in the several papers [10, 26, 15, 27] for different cases. However the
pressure accuracy in a standard pressure-correction scheme can be at most of first-order in the
L2-norm, as shown by Strikwerda and Lee in [27]. In 1996, Timmermans, Minnev and Van De
Vosse introduced in [30] a modified pressure-correction scheme. They analyzed this approach
by means of an analytical test solution in the case of spectral element spatial discretization,
and showed that the L2 errors of both the velocity and the gradient of the pressure are of
second-order, but the computed maximum pressure failed to converge due to the presence of
the corners. Recently, Guermond and Shen [14] reviewed this modified version of the pressure-
correction schemes. They termed it as the rotational form of the pressure-correction schemes,
and showed that the pressure approximation in the L2-norm is indeed 3

2 -order accurate. A
detail proof was given in the semi-discrete case.

The main task of the present paper is to provide a rigorous stability and error analysis
for the rotational form of the pressure-correction schemes in the fully discrete case using a
Galerkin spectral approximation. In order to get the optimal error estimates, we still assume
that the approximate velocity and pressure space pair satisfies the LBB condition. We prove
that the velocity error in time and in space is O(δt2 +N−m) for the l2(L2(Ω)2)-norm and that

the pressure error is O(δt
3

2 +N−m) for the l2(L2(Ω))-norm, where N is the polynomial degree
used to approximate the velocity, δt is the time step, m is the regularity of the exact pressure
solution. Our numerical experiences are in good agreement with the above theoretical results
for the velocity, but the computed pressure appears to have higher order accuracy in time than
O(δt

3

2 ). Particularly our numerical results show that the pressure accuracy is sensible to the
kinematics viscosity in the case of singular computational domain. In the case of square domain,
for the L2(Ω) norm at a given time T ≥ 1, the pressure accuracy is less than 2-order. But in
the case of smooth domain, the pressure accuracy is fully 2-order. This conforms to the results
given in [30] and [14].

We should emphasize that, in order to gain maximal simplicity in the implementation, our
numerical experiences use spectral and spectral element approximations of PN ×PN version (we
refer to [14] for the PN ×PN−2 version). As already indicated in [14], there are larger pressure
errors at the domain corners for the projection PN × PN−2 spectral methods. Our numerical
results show that these larger pressure errors will be further enlarged if the PN × PN version
is used, and the maximum pressure error fails to converge due to the presence of the corners,
specially for very small δt. However we will show that this failure can be efficiently overcome
by a simple filtering procedure, which consists in projecting the computed pressure into PN−2

space at each time step. This procedure is, in some sense, equivalent to the PN ×PN−2 version,
but is easier to implement. We refer it to as the filtered PN × PN version.

The outline of this paper is as follow: in Section 2 we recall the basic steps of projection-type
methods, and define their spectral approximation formulations. In section 3 we provide rigorous


