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Abstract

We study the behavior of some polynomial interior-point algorithms for solving random
linear programming (LP) problems. We show that the expected and anticipated number
of iterations of these algorithms is bounded above by O(n'*). The random LP problem is
Todd’s probabilistic model with the Cauchy distribution.
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1. Introduction

Since Karmarkar [4] introduced his O(nL)-iteration projective algorithm, the area of interior
point algorithms for linear programming have developed rapidly. Many other algorithms have
been introduced to the growing literature on interior point algorithms, for examples, path-
following algorithms; potential reduction algorithms; and predictor-corrector algorithms, etc.
The best known worst-case iteration complexity for interior point algorithms is O(y/nL), where
n is the number of variables and L is the input data length of the LP problems.

In practice the interior point algorithms also performed compatetive with simplex algo-
rithm. People (e.g.,Lustig et la. [6], Yang and Huang [10]) have observed that the number
of iterations needed to solve the LP problems is O(lnn) using regression. Therefore there is
a gap between the theoretical worst case complexity and practical performance of the interior
point algorithms. Ye [11] showed that the anticipated number of iterations of interior point
algorithms is bounded above by O(y/nlnn). Recently, Anstreicher et al. [1] have obtained
expected number of iterations bound of O(nlnn) for a variant of degenerate random LP model
(Model II of Todd [9]) using the infeasible primal-dual algorithms of Potra [8]. Huang [3] has
shown that the expected number of iterations of some feasible interior point algorithms (e.g.,
Kojima et la. [5]) is bounded above by O(n'-%) for a nondegenerate random LP model (Model
I of Todd [9]).

In this paper, we will show that the expected and anticipated number of iterations of some
interior point algorithms is bounded above by O(n!-3) for solving a random LP model which is
an extension of Todd’s model I in [9].

The paper is organized as follows. In section 2, we introduce the random LP model and
some useful results. We review the stopping criterion for polynomial interior-point algorithms
in section 3. Section 4 derives a bound for the expected number of iterations for solving the
random LP model using certain interior point algorithms. We show the anticipated result in
section 5. Finally we will give some concluding remarks in section 6.
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2. The Probabilistic Model

We consider the following probabilistic model which is an extension of Todd’s model I in

[9].

(LP) minimize ez

subject to Az =b, x >0,

where b = Ae and e € R™ is a vector of all ones, A = (a;;) € R™*" is a random matrix whose
entries are independently and identically distributed as Cauchy distribution with characteristic
function e=°*l (¢ > 0). It’s dual form can be stated as:

(LD)  minimize eTs

subject to s=e— ATy,s >0,
since bTy = (Ae)Ty = eTATy = eT(e — 5) = n — eTs. Therefore max b7y is equivalent to
min eT's. The following lemma will help us to derive the distribution of the optimal solution of
above random LP model.
Lemma 2.1. Consider the system Bx = d, where B = (a;;) € R™*™ is a random matric
such that a;; (i,j = 1,---,m) are independent and identical(iid) Cauchy random wvariables,
and d € R™ is a random vector such that d;(i = 1,--- ,m) are iid Cauchy random variables.
Assume the columns of B and d are independent. Then the random variables xy (k=1,--- ,m)
are distributed as ’;—’g (k=1,---,m) where A\, (k=0,1,---,m) are independent and identical
random variables with Cauchy distribution.
Proof. The proof is similar to the proof in Girko [2] where the matrix B is not a square

matrix. For completion we include it here. It is easy to see that detB # 0 with probability one.
By Cramer’s rule we have

iy diBi _ (X2, diBi) R
Yo awBay (O aiBig)R™Y

where By, (i = 1,--- ,m) is the cofactor of the a;, in the matrix B, R = (3., |Bix|) and |Bjg|
is the determinant of B;y.

Next we calculate the joint characteristic function of the numerator and denominator of (x)
using conditional expectation:

Ty =

(%)

m m
Eewp{itz d,’Bz’kR_l + ’LTZ a,-kBikR_l}
i=1 i=1

= EElexp{ity d;BjxR ' +ity ayBuR YVYay,v=1,--- ,myp={1,---,m}/k
N

i=1 i=1

= E[H exp{—c|tByx|R '} H exp{—c|TBi|R'}]

i=1 i=1
= exp{—c|t|exp{—c|[}.

Therefore the numerator and denominator are independent and identically distributed as Cauchy
distribution.

Using lemma 2.1 we can obtain following two lemmas which discuss the distribution of the
vertices of (LP) and (LD).
Lemma 2.2. Let A\, A1, -+, A\ be independent and identical Cauchy random variables.
Then a vertex (may not be feasible) of (LP) has its basic variables distributed like 1 + d;\‘—; for
i=1,---,m (d =n—m) and its nonbasic variables equal 0. Furthermore, every vertex of (LP)
is nondegenerate with probability one.

Proof. Assume that first m columns of A are basic columns and is denoted by B, and



