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Abstract

In this paper we consider continuous-time and discrete-time waveform relaxation meth-
ods for general nonlinear integral-differential-algebraic equations. For the continuous-time
case we derive the convergence condition of the iterative methods by invoking the spec-
tral theory on the resulting iterative operators. By use of the implicit difference forms,
namely the backward-differentiation formulae, we also yield the convergence condition of
the discrete waveforms. Numerical experiments are provided to illustrate the theoretical
work reported here.
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1. Introduction

We consider a system which is described by nonlinear integral-differential-algebraic equations
(IDAEs) as follows















ẋ(t) = f̃1(ẋ(t), x(t), y(t),

∫ t

0

h̃1(x(s), y(s), s, t)ds, t), x(0) = x0,

y(t) = f̃2(ẋ(t), x(t), y(t),

∫ t

0

h̃2(x(s), y(s), s, t)ds, t), t ∈ [0, T ],

(1)

where t is the time variable, x0 ∈ Rn is an initial value, [0, T ] is a given finite time interval,
x(t) ∈ Rn and y(t) ∈ Rm are to be computed. We assume that the initial condition of (1) is
consistent, that is, for a given x0(= x(0)) we can solve out ẋ(0) and y(0) from the following
initial condition system:

{

ẋ(0) = f̃1(ẋ(0), x0, y(0), 0, 0),

y(0) = f̃2(ẋ(0), x0, y(0), 0, 0).
(2)

We will also denote y(0) as y0 in this paper.
For a large and complex system like (1) waveform relaxation (WR) or dynamic iteration is

a novel parallel algorithm of treating its numerical solutions [1 - 6]. Numerical algorithms with
WR are suitable to be processed in parallel [7]. The general form of the WR algorithm for (1)
is







































ẋ(k+1)(t) = f1(ẋ
(k+1)(t), ẋ(k)(t), x(k+1)(t), x(k)(t), y(k+1)(t), y(k)(t),

∫ t

0

h1(x
(k+1)(s), x(k)(s), y(k+1)(s), y(k)(s), s, t)ds, t),

y(k+1)(t) = f2(ẋ
(k+1)(t), ẋ(k)(t), x(k+1)(t), x(k)(t), y(k+1)(t), y(k)(t),

∫ t

0

h2(x
(k+1)(s), x(k)(s), y(k+1)(s), y(k)(s), s, t)ds, t),

x(k+1)(0) = x0, t ∈ [0, T ], k = 0, 1, · · · ,

(3)
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where [x(0)(·), y(0)(·)]t is an initial guess, the nonlinear splitting functions f1 : (Rn)4 × (Rm)2 ×
Rl1 × [0, T ] → Rn, f2 : (Rn)4×(Rm)2×Rl2× [0, T ] → Rm, h1 : (Rn)2×(Rm)2× [0, T ]2 → Rl1 ,

and h2 : (Rn)
2 × (Rm)

2 × [0, T ]2 → Rl2 satisfy
{

f1(w,w, x, x, y, y, z1, t) = f̃1(w, x, y, z1, t),

f2(w,w, x, x, y, y, z2, t) = f̃2(w, x, y, z2, t),
(4)

and
{

h1(x, x, y, y, s, t) = h̃1(x, y, s, t),

h2(x, x, y, y, s, t) = h̃2(x, y, s, t),
(5)

where w, x ∈ Rn, y ∈ Rm, z1 ∈ Rl1 , z2 ∈ Rl2 , and s, t ∈ [0, T ]. The above splitting functions
are often adopted as Jacobi or Gauss-Seidel.

We also study in this paper the well-known Picard iteration for (1). This kind of iterations
is a special form of WR in (3), namely























ẋ(k+1)(t) = f̃1(ẋ
(k)(t), x(k)(t), y(k)(t),

∫ t

0

h̃1(x
(k)(s), y(k)(s), s, t)ds, t),

y(k+1)(t) = f̃2(ẋ
(k)(t), x(k)(t), y(k)(t),

∫ t

0

h̃2(x
(k)(s), y(k)(s), s, t)ds, t),

x(k+1)(0) = x0, t ∈ [0, T ], k = 0, 1, · · · ,

(6)

where [x(0)(·), y(0)(·)]t is an initial guess as before.
It is known that a circuit system with lumped elements may have the form of (1). For

example, if all the elements of a circuit are linear we can then describe the circuit by a system
of linear IDAEs [7]. For a high-speed integrated circuit, its equation form may be written as
nonlinear differential-algebraic equations (DAEs) with multiple delays if the transmission lines
are lossless [8]. As long as the distributed elements (R, L, C, and G) exist in a large circuit
we will meet nonlinear IDAEs with multiple delays in the time-domain simulation, see [9]. In
other words, some complex differential and integral equations are often arising in the modern
circuit simulation field. Here, we will not concretely concern the modelling problems which are
really beyond the scope of the paper.

As a simple case, namely without the term y(·) and the second part of (1), a discrete-
time WR version is considered in [10]. Moreover, WR solutions of Volterra integral equations
are studied in [11]. To take advantage of Lipschitz constants of the nonlinear functions in a
system of DAEs, WR is successfully applied to compute their numerical solutions [12, 13]. By
a different approach from the known ones we have presented a general convergence condition
about continuous-time WR solutions of nonlinear DAEs in [14]. The interesting approach can
easily treat complex systems with WR decoupling. It is the first time that the spectral approach
is used in WR solutions of nonlinear IDAEs.

In this paper we mainly study the convergence conditions of the continuous-time WR algo-
rithm (3) and the Picard iteration (6) based on operations of linear operators and spectral anal-
ysis in function space. We also discuss discrete-time WR solutions by a backward-differentiation
formula (BDF). Some typical systems with WR are further included into the paper. Numerical
experiments on a test example are provided to illustrate these new convergence conditions.

2. Continuous-time Waveform Relaxation

First we assume that the splitting function pairs (f1, f2) and (h1, h2) respectively satisfy
the following Lipschitz conditions.
Condition (Lf). For four vector norms ‖ · ‖n in Rn, ‖ · ‖m in Rm, and ‖ · ‖li

in Rli (i = 1, 2),
we assume that there are constants ai, bi(i = 1, 2, · · · , 6), α, and β such that

‖f1(u1, u2, · · · , u6, z1, t) − f1(v1, v2, · · · , v6, w1, t)‖n

≤ ∑4
i=1ai‖ui − vi‖n +

∑6
i=5ai‖ui − vi‖m + α‖z1 − w1‖l1

,
(7)


