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Abstract

In this paper, we propose a new branch and bound algorithm for the solution of large
scale separable concave programming problems. The largest distance bisection (LDB)
technique is proposed to divide rectangle into sub-rectangles when one problem is branched
into two subproblems. It is proved that the LDB method is a normal rectangle subdivi-
sion(NRS). Numerical tests on problems with dimensions from 100 to 10000 show that the
proposed branch and bound algorithm is efficient for solving large scale separable concave
programming problems, and convergence rate is faster than ω-subdivision method.
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1. Introduction

The nonconvex programming has come a long way from 60th years of last century (see[6],
[9], [4]). It is an important area of mathematical programming, and has many applications in
economics, finance, planning, and engineering design. The separable concave programming is
a kind of special problems in nonconvex programming. This paper studies the solution of the
separable concave programming over a polytope in the form

max{f(x)|x ∈ V, l ≤ x ≤ u}, (SCP)

where the objective function has the format

f(x) =
n∑

i=1

fi(xi), (1.1)

fi(xi), i = 1, 2, . . . , n are convex functions, x = (x1, x2, . . . , xn)T . The feasible region is the
intersection of the polytope V and the rectangle with low bounds l = (l1, l2, . . . , ln)T and upper
bounds u = (u1, u2, . . . , un)T .

Algorithms have been proposed to solve problems (SCP). Falk and Soland(1969) reported a
branch and bound algorithm in [1], Thai Quynh Phong et al(1995) proposed a decomposition
branch and bound method in [8] to find the global solution of indefinite quadratic programming
problems, and tests on problems with 20 concave variables and 200 convex variables show the
efficiency of the method. Konno (2001) proposed a branch and bound algorithm to solve large
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scale portfolio optimization problems with concave transaction cost (see [2],[4]). The algorithm
is based on linear underestimations to objective functions, and is successively used to solve large
scale optimal portfolio selection problems with 200 assets and 60 simulated scenarios based on
the MAD model (see [2]).

In this paper, we will propose a new branch and bound method to solve the large scale
separable concave programming problems. A rectangular subdivision process (largest distance
bisection, LDB) is proposed. Linear overestimations to objective f(x) are employed to replace
f(x), and problems

max{gi(x)|x ∈ V, li ≤ x ≤ ui} (LOP )

are successively solved, where the objective function gi(x) =
∑n

j=1 gi
j(xj), and gi

j(xj), j =
1, 2, . . . , n, are linear overestimations to functions fj(xj) over the set Si = [li, ui].

Rectangle subdivision processes play an important role in branch and bound methods. As
will be seen later, the concept of ”normal rectangular subdivision” introduced in reference
(3) will be concerned in the method proposed in this paper. The class of normal subdivision
methods includes the exhaustive bisection, ω-subdivision and adaptive bisection (see [8]). A
new bisection technique will be proposed and it will be shown that the proposed bisection
method belongs to the class of normal rectangular subdivisions. Experiments on quadratic
functions with different dimensions show that the iterative process with the proposed bisection
technique can converge effectively. The quadratic function is a type concave function when
we set its second order coefficients negative. The dimensions of tested problems ranges from
100 to 10000, large scale problems. The coefficients of these tested problems are randomly
generated from uniform distribution. Tested functions are very important in economical and
financial field, and usually used to express utilities or costs (see [5]). These functions often
exhibit concave characteristics when they are used to denote cost functions or utility functions
under the rule of margin cost (utility) decrease. When net returns or expected utilities are
maximized, the resulting problem usually is a separable concave programming (see [7],[5],[2],).

A series of numerical experiments is presented and shows the efficiency of the proposed
bisection method. It also shows that the algorithm can solve problems of practical size in an
efficient way.

The rest of the paper is organized as follows. In Section 2, we will describe the new branch
and bound algorithm. In section 3, we discuss the construction of a normal rectangular sub-
division, and the largest distance bisection strategy will also be presented in this section. In
section 4, we conduct a series of numerical tests, and present comparisons with some different
bisection methods. Conclusions are given in section 5.

2. A Branch and Bound Algorithm

In this section, we describe the branch and bound method which bases upon a chosen normal
rectangular subdivision process.

Let S0 = {li ≤ xi ≤ ui, i = 1, 2, . . . , n} be a rectangle. We replace the convex functions
fi(xi) in f(x) by an overestimated linear function g0

i (xi) over S0(see Figure 1),

g0
i (xi) = δixi + ηi, i = 1, 2, . . . , n (2.1)

where

δi =
fi(ui) − fi(li)

ui − li
, ηi = fi(li) − δili, i = 1, 2, . . . , n. (2.2)

Let

g0(x) =
n∑

i=1

g0
i (xi),

then g0(x) is the convex envelope of the function f(x) over the set S0. We solve the linear


