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Abstract

This paper attempts to develop kinetic flux vector splitting (KFVS) for the Euler equa-
tions with general pressure laws. It is well known that the gas distribution function for
the local equilibrium state plays an important role in the construction of the gas–kinetic
schemes. To recover the Euler equations with a general equation of state (EOS), a new
local equilibrium distribution is introduced with two parameters of temperature approx-
imation decided uniquely by macroscopic variables. Utilizing the well-known connection
that the Euler equations of motion are the moments of the Boltzmann equation whenever
the velocity distribution function is a local equilibrium state, a class of high resolution
MUSCL–type KFVS schemes are presented to approximate the Euler equations of gas dy-
namics with a general EOS. The schemes are finally applied to several test problems for a
general EOS. In comparison with the exact solutions, our schemes give correct location and
more accurate resolution of discontinuities. The extension of our idea to multidimensional
case is natural.

Mathematics subject classification: 65M06,76M20, 76N15.
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1. Introduction

The development of KFVS schemes and BGK–type schemes for compressible flow simula-
tions has attracted much attention and becomes mature in the past few years. The gas-kinetic
schemes have provided robust and accurate numerical solutions for various unsteady compress-
ible flows (see [3, 11, 13, 14, 15, 16, 17, 18, 20]).

Numerical simulation of compressible flows of real gases has been conducted by several
authors in [5, 6, 7, 8, 9, 12, 22]. Colella and Glaz in [5] obtained an exact Riemann solver for
real gases. Glaister in [7] presented an approximate linearised Riemann solver for the Euler
equations with a general EOS. Grossman and Walters [8], and Liou, van Leer and Shuen [9],
Vinokur and Montagne [22] extended flux–vector splitting and flux–difference splitting to the
Euler equations with general pressure laws.

Most of the previous methods would require a computation of the pressure law and its
derivatives, or a Riemann solver. This is costly and problematic when there is no analytic
expressions of the pressure law. Recently Coquel and Perthame [6] introduced an energy re-
laxation theory for the Euler equations of real gas. Their method does not need computations
of derivatives of the pressure law or a Riemann solver. In [12], Montarnal and Shu studied the
implementation of this relaxation method with high order WENO schemes for real gases.

As we know, the gas distribution function for a local equilibrium state plays an important
role in the construction of gas-kinetic schemes, and the Maxwellian distribution function, or
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the Maxwell-Boltzmann distribution can be used to recover the Euler equations with a γ–gas
law. However, one cannot use these equilibrium distribution functions to recover the Euler
equations with a general EOS. In order to do it, a new equilibrium distribution with two
parameters of temperature approximation will be introduced in this paper to recover the Euler
equations with general pressure laws. These parameters can be decided uniquely by macroscopic
variables. Moreover, using the well-known connection that the Euler equations of motion are
the moments of the Boltzmann equation whenever the velocity distribution function is a local
equilibrium state, we will also give a class of high resolution KFVS methods to approximate
the Euler equations of gas dynamics with a general EOS. They do not depend on the particular
expression of the equation of state, besides without derivatives of the pressure law or any
Riemann solvers. Finally, several test problems for some special EOSs will be solved by the
present schemes to show their performance.

The paper is organized as follows. In next section we will recall the connection between
the Boltzmann and the Euler equations, and introduce a new equilibrium distribution function
to recover the Euler equations with a general EOS, which can be considered as a generalized
local Maxwellian distribution function. In Section 3, a class of high resolution KFVS schemes
are presented based on the local equilibrium distribution function introduced in Section 2, and
the van Leer’s interpolation method. In Section 4, we give several numerical experiments on a
standard shock reflection test problem and two shock-tube problems for three different EOSs
to show the performance of the current schemes. We conclude the paper with a few remarks in
section 5.

2. A New Local Equilibrium Distribution

The Euler equations governing inviscid compressible fluid flows can be described as equations
for the mass, momentum and energy densities, ρ(x, t), ρ(x, t)u(x, t), and E = 1

2ρu
2 + ρe(x, t),

i.e.
∂U

∂t
+
∂F (U)
∂x

= 0, (2.1)

where
U = [ρ, ρu, E]T , F (U) =

[
ρu, ρu2 + p, u(E + p)

]T
. (2.2)

In the above ρ, u, p, and e represent the density, velocity, pressure, and the specific internal
energy density, respectively.

The system (2.1) is not complete. We should consider an additional equation, i.e. the EOS,
which is a macroscopic thermodynamic relationship specific to each particular fluid, and assume
here that it can be written in the form

p = p(ρ, e). (2.3)

Moreover, the function p(·, ·) will be assumed to satisfy conditions which ensure that the system
(2.1) is hyperbolic. In the case of an ideal gas, (2.3) becomes

p = (γ − 1)ρe, (2.4)

here γ is the ratio of specific heat capacities of the fluid.
Flow motion can also be described from viewpoint of particle motion, or the statistical

description of a fluid. Due to the large number of particles in small volume in common situations,
to follow each one is impossible. Instead, a continuous distribution function f(xi, t, vi) is used
to describe the probability of particles to be located in a certain velocity interval, and to
approximate usually the particle number density at a certain velocity in hydrodynamics. The
velocity distribution function f is a basic unknown in the kinetic theory of gases, and obeys a
particle conservation law, known as the Boltzmann equation, which is given by

∂f

∂t
+ v · ∂f

∂x
= J(f, f), (2.5)


