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Abstract

In this article we consider a two-level finite element Galerkin method using mixed
finite elements for the two-dimensional nonstationary incompressible Navier-Stokes equa-
tions. The method yields a H'-optimal velocity approximation and a L*-optimal pressure
approximation. The two-level finite element Galerkin method involves solving one small,
nonlinear Navier-Stokes problem on the coarse mesh with mesh size H, one linear Stokes
problem on the fine mesh with mesh size h << H. The algorithm we study produces an
approximate solution with the optimal, asymptotic in h, accuracy.
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1. Introduction

Two-level finite element Galerkin method is an efficient numerical method for solving non-
linear partial differential equations, e.g., see Xu [24, 25] for steady semi-linear elliptic equations,
Layton [14], Ervin, Layton and Maubach [5], Layton and Lenferink [15] and Layton and To-
biska [16] for the steady Navier-Stokes equations. This method is closely related to the nonlinear
Galerkin method [1,10, 17-19, 22] and recently developed in [7,21] to solve the nonstationary
Navier-Stokes equations. However,it is well known [1, 10, 17-19] that a defect of the nonlinear
Galerkin methods is needed to approximate solution u;, as the large eddy component y* and
the small eddy component 2" and solve the unknown components ¥y and z" simultaneously,
that is to solve a coupled nonlinear and linear equations and increase computing price.

In the case of the nonlinear evolution problem, the basic idea of the two-level method is to
find an approximation ug by solving a nonlinear problem on a coarse grid with grid size H
and find an approximation u” by solving a linearized problem about the known approximation
ug on a fine grid with grid size h. The semi-discretization in space of the 3D time-dependent
Navier-Stokes problem by the two-level method is considered in [7]. Furthermore, the fully
discretization in space-time of the 2D and 3D time-dependent Navier-Stokes problem by the
two-level method is analyzed in [21], where the local error estimates, stability and convergence
are proved, but the global error estimates do not provided. In fact, this scheme is of the global
first-order accurate with respect to the time step size 7.

In this report we consider continuity the two-level method used in [21] for the nonstationary,
incompressible Navier-Stokes equations and give the error estimates of optimal order for the
approximate velocity and pressure. If the equations is discreted by the standard finite element
Galerkin method, there will be a large system of nonlinear algebraic equations to be solved.
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To overcome this difficult, we will apply a two-level finite element Galerkin method for solving
the nonstationary Navier-Stokes equations in the framework of mixed finite elements. This will
yield a small system of nonlinear algebraic equations and a large system of linear algebraic to
be solved, i.e., this method can save some computational work. For the standard finite element
Galerkin method, the discrete velocity up(-,t) and pressure py(-,t) are determined in finite
element spaces denoted respectively by X} and M), which satisfy the so-called inf-sup condition
(' see [3,8,11] ). Our two-level finite element Galerkin method consists in

e Finding (um,pn) € (Xm, Mp) by solving the nonlinear Navier-Stokes problem on the
coarse mesh with width H;

e Finding (u”, p") € (X, My,) by solving the linear Stokes problem based on (ufr, prr) on
the fine mesh with width h << H.

In this paper, our main results are the following results:
Ju"(t) — un ()|l < K(OH® Yt >0, (1.1)
19" (8) = pu(t)||L> < K(8)H? VE>0, (1.2)

where (up, pr) is the standard finite element Galerkin approximation based on (X, M}p) which
satisfies the following error estimates:

lu(t) = un(®)|m < K(t)h,VE > 0, (1.3)
lp(t) — pu(t)[|L2 < K(E)h,VE > 0. (1.4)

These estimates indicate that the two-level finite element Galerkin method gives the same
order of approximation as the standard finite element Galerkin method if we choose H =
O(h1/2). However, in our method, the nonlinearity is only treated on the coarse grid and only
the linear problem needs to be solved on the fine grid. Of course, the comparison with the
standard finite element Galerkin method, the two-level finite element Galerkin method should
be made more precise by studying questions related to time discretization and computational
implementation. These will be addressed in the several continuations of this work.

2. The Navier-Stokes Equations

Let © be a bounded domain in R? assumed to have a Lipschitz-continuous boundary I' and to
satisfy a further condition stated in (2.5) below. We consider the time dependent Navier-Stokes
equations describing the flow of a viscous incompressible fluid confined in 2:

%_VAUHU.V)UJrvp:f inQ,t>0, (2.1)
divu=0 inQ,t>0, (2:2)
u=0 onl,t>0, (2.3)
w(0) =1 inQ, (2.4)

where u = (u1,u2) is the velocity, p is the pressure, f represents the density of body forces,
v > 0 is the viscosity and wg is the initial velocity.
In order to introduce a variational formulation, we set

X =Hy(2)?*,Y = L*(Q)?,

and

M = I3@) = {g € @) [ a(o)ds =0}
Q



