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Abstract

In this paper, we discuss the convergence of the Broyden algorithms with revised search
direction. Under some inexact line searches, we prove that the algorithms are globally
convergent for continuously differentiable functions and the rate of local convergence of the
algorithms is one-step superlinear and n-step second-order for uniformly convex objective
functions.
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1. Introduction

The Broyden family of algorithms remains a standard workhorse for minimization. These
methods share the properties of finite termination on strictly convex quadratic functions, a
superlinear rate of convergence on general strictly convex functions, and no need to store or
evaluate the second derivative matrix. (see [2,4, 1, 5, 6, 7]). However, there are several unsolved
problems for the Broyden algorithms. In this paper we propose a new class of variable metric
algorithms with revised search directions. We prove that the algorithms are convergent for
the continuously differentiable objective functions. Also the new algorithms are superlinear
and n-step second order convergent for uniformly convex functions when the line searches are
inexact, but satisfy some search conditions.

These algorithms are iterative. Given a starting point z; and an initial positive definite
matrix By, they generate a sequence of points {z} and a sequence of matrices of {Bj} which
are given by following (1) and (2)

Tht1 = T + Sp = Tk + apdy (1)
where ay > 0 is the step factor, dj, is the search direction satisfying
—dr = Hpgr + ||QuHrgrl| Rigr,

where g, is the gradient of f(z) at xy, Hy, is the inverse of By, {Qr} and { Ry} are two sequences
of positive definite matrices which are uniformly bounded. All eigenvalues of these matrices are
included in [g,7], 0 < ¢ < r, i.e., for all k and © € R",z # 0

dllz|l® < 2T Qua < rllall®;  gllall® < & Ryw <rllall®.
If gr = 0, the algorithms terminate, otherwise let

BisesFBe  ywyl

Byy1 = By, — + ¢(s§ Brsk)vrvj, (2)
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where yr = gr+1 — Gk, vk = Yk(styr) ' — Bisk(si Bisk) ' and ¢ € [0,1]. In the above
algorithms, if ¢ = 0 we call it revised BFGS algorithm, or RBFGS algorithm and if ¢ = 1 we
call it revised DFP algorithm, or RDFP algorithm.

The matrix Hyy1 denotes the inverse of Bj1, the recurrence formula of Hyy4 is

Hyyryt He  sipst pupd

Hyi 1 = Hy —
yl Hyys, styr  yi Heyr'

where .
H
i = Hiyr, — ykTikykSk (4)
Sk Yk
and p € [0, 1], the relationship of p and ¢ is

Q- pew?
(1 —p)(stye)? + pyi Hryesi Besk

QS:

In this paper, the line searches are not required to be exact. In order to guarantee descentness
of the objective function values and the convergence of the algorithms, we must give some
conditions for determining ayj. We use Wolfe conditions on line searches,

f(@r) = f(@rs1) > Co(—gisk) (5)

and
gt 18] < Oo(—gi s1), (6)

where (p and 6y be two constants satisfying 0 < (o < 8y < 1/2. We always try o = 1 first in
choosing the step length.

Using the mathematical induction it is easy to imply that By and Hy are positive definite
matrices if H; and B, are positive definite matrices.

If no ambiguities are arisen we may drop the subscript of the characters, for example, g, z,
R denote g, xr, R, and use subscript * to denote the amounts obtained by the next iteration,
.., g, T«, R, denote gi+1, T41, Ri+1, respectively.

For simplicity we let
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The paper is outlined as follows: Section 2 gives several convergence results without the
convexity assumption. Section 3 gives some results for convex objective functions. In Sections
4, we prove that the algorithms are linearly convergent for ¢ € [0,1) in detail. In Section 5,
we prove that our algorithms are one-step superlinearly convergent, then give the quadratical
convergence of the algorithms without detail proof.

Throughout this paper the vector norms are Euclidian.

2. Results Without Convexity Assumption

In this section, we assume:



