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Abstract

The nonlinear complementarity problem can be reformulated as a nonsmooth equa-
tion. In this paper we propose a new smoothing Newton algorithm for the solution of
the nonlinear complementarity problem by constructing a new smoothing approximation
function. Global and local superlinear convergence results of the algorithm are obtained
under suitable conditions. Numerical experiments confirm the good theoretical properties
of the algorithm.

Key words: Nonlinear complementarity problem, Smoothing Newton method, Global con-
vergence, Superlinear convergence.

1. Introduction

Let F' : R — R™ be a continuously differentiable mapping and X be a nonempty closed
convex set in R™. The variational inequality problems,; denoted by VIP(F,X), is to find a
vector z* € X such that

Fa)"(x—2*) >0 forallze X (1.1)

If X = R%, VIP(F, X) reduces to the nonlinear complementarity problem, denoted NCP(F),
which is to find z € R™ such that

z>0,F(z) > 0,21 F(z) =0. (1.2)

Two comprehensive surveys of variational inequality problems and nonlinear complementarity
problems are [1] and [3]. The study on iterative methods for solving VIP(F, X') and NCP(F) has
been rapidly developed in the last decade. One of the most popular approaches is to reformulate
NCP(F') as an equivalent nonsmooth equation so that generalized Newton-type methods can
be applied in a way similar to those for smooth equations.

Much effort has been made to construct smoothing approximation functions for approach
to the solution of NCP(F) in recent years [2, 4, 5, 6, 7, 18, 19]. This class of algorithms, called
smoothing Newton method, is due to Chen, Qi, and Sun [2]. In [2], the locally superlinear
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convergence of a smoothing Newton method is established. In this paper, we will construct
a new smoothing approximation function and present a new smoothing Newton method. The
proposed smoothing Newton method meets the demands used in the Chen et al. in [2] and is
easy to implement. We will show global and superlinear convergence of the proposed method
under the same assumptions as used by Chen et al. [2] and by Qi et al. [19].

Next we introduce some words about our notation: Let G : R™ — R™ be continuously
differentiable. The VG(z) € R™*™ denotes the Jacobian of G at a point z € R". If m =1,
VG (z) denotes the gradient of G at a point € R"™. If is G : R™ — R™ only local Lipschitzian,
we can define Clarke’s [12] generalized Jacobian as follows:

OG (x) := conv{H € R™*"|3{z*} C D¢ : 2% — z and G'(z*) — H};

here Dg denotes the set of differentiable points of G and convsS is the convex hull of a set S.
If m =1, we call 0G(z) the generalized gradient of G at z for obvious reasons.

Usually, 0G(z) is not easy to compute, especially for m > 1. Based on this reason, we use
in this paper a kind of generalized Jacobian for the function G, denoted by 0¢cG and defined
as(see [13])

0cG = 0G1(x) x 0G5 (x) x -+ x OG(x),

where G;(z) is ith component function of G.

Furthermore, we denote by ||z|| the Euclidian norm of = if x € R™ and by ||A|| the spectral
norm of a matrix A € R™ "™ which is the induced matrix norm of the Euclidian vector norm.
If A€ R™*" is any given matrix and M C R\*\ is a nonempty set of matrices, we demote by
dist(A, M) := infge || A — B|| the distance between A and M.

The remainder of the paper is organized as follows: In the next section, the mathematical
background and some preliminary results are summarized. The algorithm is proposed in de-
tail in section 3. Section 4 is devoted to proving global local superlinear convergence of the
algorithm. Numerical results are reported in section 5.

2. Preliminaries

In this section, we first introduce the conception of NCP-function. A function ¢ : R2 — R
is called an NCP-function if ¢(a,b) = 0 is equivalent to a > 0, b > 0, ab = 0. Let us define the
function H(x) = (hy(z), h2(x),- -+, ha(x))T, where for each i = 1,2,--- n,

hi(z) = min{x;, F;(x)}. (2.1)
Then NCP (F') can be reformulated as the following nonsmooth equation:
H(z)=0. (2.2)

Function h; and hence H are not differentiable everywhere but semismooth in the sense of
Mifflin [17] and Qi [11] if F' is continuously differentiable. Denote

alz) = {i: Fi(z) <z}, B8(x) ={i: Fi(x) = z;},v(x) = {i : Fi(z) > z;}.

Then we have

Fi(x), if i € a(x)
hi(z) =< min{x;, Fi(x)}, ifi€ B(z)
i, if i € y(x)

By using the chain rule for generalized derivatives of Lipschitz functions(see [12]), we have the
following expression of c®(z) = Ohy(x) x Oha(x) X --- X Ohyp(x) for each i =1,2,---,n,
{VF;(z)}, ifi € o)
Ohi(z) = {Z(L+pler, 3(1 - p)VE(2)}, ifi€ B(x) (2.3)
{ei}, if i € y(z)



