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Abstract

This paper deals with analytic and numerical dissipativity and exponential stability
of singularly perturbed delay differential equations with any bounded state-independent
lag. Sufficient conditions will be presented to ensure that any solution of the singularly
perturbed delay differential equations (DDEs) with a bounded lag is dissipative and expo-
nentially stable uniformly for sufficiently small £ > 0. We will study the numerical solution
defined by the linear #—method and one-leg method and show that they are dissipative
and exponentially stable uniformly for sufficiently small £ > 0 if and only if § = 1.
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1. Introduction

Singular perturbation problems(SPPs) form a special class of problems containing a small
parameter . They are of practical interest in models of instantaneous phenomena and include
a subclass of what we frequently thought of as ‘stiff’ equations. Singularly perturbed delay
differential equations of the form

ey'(t,e) = g(t,y(t,e),y(t —,€)), 0<t<T, (1)
subject to the initial condition
y(t,s) = ¢(t75)7 -7<t<0 (2)

arise in the study of an “optically bistable device” [7] and in a variety of models for physiological
processes or diseases [16]. Such a problem has also appeared to describe the so-called human
pupil-light reflex [15]. For example, Ikeda [13] adopted the model

6yl(t>5) = _y(t>6) + A2 [1 +2B cos(y(t - 1)5))]

to describe an optically bistable device and showed numerically that instability or chaotic
behaviour occurs for small € and certain values of A, B. This was confirmed experimentally by
Gibbs, Hopf, Kaplan and Shoemaker [9].

1.1. A Simple Example
Before we investigate dissipativity and exponential stability of singularly perturbed delay
differential equations, we first consider a simple ordinary differential equation in the form

ey'(t) = Xy(t), (RA<L0), t>0,
y(0) = o, (3)
which has the solution N
y(t) = e="yo.
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The most obvious classical difference scheme for solving this problem numerically is §—method:

6(yn+1 - yn) = 9/\hyn+1 + (]- - 9)/\hyn7 (4)
where n > 0. Solving it explicitly, we obtain
e+ (1L—60)A\h
- S it 5
Yn+1 c — OB Yn, ( )
in which %should be an approximation to e*".

There are several disadvantages of the §—method. First, the §—method doesn’t possess
uniform convergence in €. Let p = % The general form of the first mesh error is

. Ap
— — |eM —
tim () =311 = | = (14 725 . (6)
When p =1,y # 0, for example, (6) reads
A
. _ |
fin () 1] = | = (14 1250 |l 20 )

which means nonuniform convergence in €. In addition, it can be proved that
lim |y(h) =4[ =0 (8)

h — 0
p — oo

for any initial value if and only if § = 1.
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Figure 1: Graph of error function with respect to the ratio p of stiff coefficient ¢ and step-size
h.

Figure 1 implies that the error is small only for small p when 6 # 1, while for the backward
Euler method (i.e. 8 = 1), the error is small for small and large ratio p and becomes significant
when € and h are of the same order of magnitude.

Second, it is clear that the discrete solution oscillates if p > _L)\ (where A € R) except 0 = 1,

because \ N
o 4
= (141250 ) Q

These oscillations are spurious since they do not occur in the solution of the continuous problem,
and can only be avoided by taking the backward Euler scheme.

Third, the original equation is asymptotically stable and hence numerical approximation
should mimic the same property, which requires
e+ (1—0)Ah

e —0\h
It is well-known that §—method is A-stable for ODEs if and only if § € [%,1]. Unfortunately, it
is easy to verify that (10) is satisfied for any Ak € {z : Rz < 0} uniformly in € > 0 if and only
if 0 € (%, 1], which rules out the trapezoidal method since it is not strongly stable at infinity.

We distinguish two cases:

‘ <1 (10)



