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Abstract

We consider the numerical approximations of the three-dimensional steady potential
flow around a body moving in a liquid of finite constant depth at constant speed and
distance below a free surface in a channel. One vertical side is introduced as the up-
stream artificial boundary and two vertical sides are introduced as the downstream arti-
ficial boundaries. On the artificial boundaries, a sequence of high-order global artificial
boundary conditions are given. Then the original problem is reduced to a problem defined
on a finite computational domain, which is equivalent to a variational problem. After
solving the variational problem by the finite element method, we obtain the numerical
approximation of the original problem. The numerical examples show that the artificial
boundary conditions given in this paper are very effective.
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1. Introduction

Consider the three-dimensional steady potential flow around a body moving in a liquid of
finite constant depth at constant speed and distance below a free surface in a channel. Let
d denote the depth of the liquid, ¢ denote the width of the channel, U denote the speed of
the body and g denote the acceleration of gravity. We scale the physical quantities by the
length d and the velocity /gd. We describe the motion in Cartesian coordinates fixed with
respect to the body, where the x-axis points opposite to the forward velocity and z-axis is
directed vertically upward, y-axis points the remaining direction of the right-angle reference
frame, y=0 corresponds to one side of the channel and y=c to another side of the channel, z=0
corresponds to the undisturbed free surface and z=-1 to the bottom. Let 2; denote the domain
occupied by the body, then © = {R x (0,¢) x (=1,0)}\€; is the domain occupied by the liquid.
The total velocity potential is split into a free stream potential plus a perturbation potential:
d=pz + ¢(z, 2), where u=U/+/gd is the Froude number. By linearizing the boundary condition
at the free surface, see whitham[22], we obtain the following problem for the perturbation
potential on the unbounded domain :

Ap=0 in Q, (1.1)
together with the boundary conditions
(42 Puz + ¢2)]2=0 = 0 —w<z<+00,0<y<c (1.2)
Gzlz=—1 =0 —o<zr<+00,0<y<c (1.3)
Gyly=0 =0 —oo< < +00,-1<2<0 (1.4)
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Oyly=c =0 —00o <z <+00,-1<2<0 (1.5)

0

6—2 = ucost 0Q;, (1.6)
lim ¢ =0, lim ¢ is bounded —-1<2<0; (1.7)

T——00 T—+00

where 0/0n denote the outward normal derivative of €, in the following 0/0n always denote
the outward normal derivative of a given domain. 6 is the angle between the outwardly directed
normal to the body and the x-direction.

There are many authors who studied the numerical simulations of the flow around a sub-
merged body in two dimensional case. For examples, Petersson and Malmliden [20] studied the
numerical solutions of the given 2-D problem using composite grids, furthermore Malmliden
and Petersson [17] proposed a Schwarz-type iterative method. Doctors and Beck [3], Nakos and
Sclavounos [18] presented the boundary integral methods. In this paper we will concentrate on
the numerical simulations of the 3D flow around a submerged body by the artificial boundary
method. The artificial boundary method is very popular used for overcoming the difficulty
caused by the unboundedness of the physical domain. During the last two decades, there are
many mathematicians and engineers who have worked on this field for various problems by
different techniques, see references [4]-[15], [21], [23].

For the given problem (1.1)-(1.7), we introduce the upstream artificial boundary Ty, the
downstream artificial boundary I'y and the auxiliary artificial boundary I'yy . We design the
high-order artificial boundary conditions on Iy, I'y and 'y, then the given problem (1.1)-(1.7) is
reduced to a boundary value problem on bounded computational domain, which can be solved
by the finite element method. Furthermore the numerical example shows the effectiveness of
the method given in this paper.

2. The Global Artificial Boundary Conditions

Take three constants a < b" < b, such that Q; C(a, b')x(0,c) x (—1,0). Then we obtain the
upstream artificial boundary ', = {(z,y,2) : £ = a,0 < y < ¢,—1 < z < 0}, the downstream
artificial boundary T'y, = {(z,y,2) : £ = 5,0 <y < ¢,—1 < z < 0}, and the auxiliary artificial
boundary T'y = {(z,y,2) : ¢ = V',0 <y < ¢,—1 < z < 0}. The artificial boundaries 'y, Ty
divide the domain € into three parts:

Q ={(z,y,2): —0 <z <a,0<y<c,—-1<z<0},

Qr ={(z,9,2);a<z<b0<y<c,—1<z<0}\,

O ={(z,y,2) :b<z < +00,0<y <e¢,—1 < z<0},
furthermore we denote

Uy ={(z,y,2) : b <z < +00,0<y <e¢,—1<2z<0}

2.1. The Artificial Boundary Condition on the Downstream Artificial Boundary
We consider the artificial boundary condition on the downstream artificial boundary. The
restriction of the solution of the problem (1.1)-(1.7) on the domain € satisfies:

Ap=0 in Qy, (2.1)
(12 Ppe + ¢2)|2=0 =0 b <z <400,0<y<c (2.2)
Gzli=—1 = bV <z <+00,0<y<c (2.3)
Gyly=0 =0 —oo<r <400, -1<2<0 (2.4)
Oyly=c =0 —oo <z <400, -1<2<0 (2.5)
IEIEOO ¢ is bounded; (2.6)

where the domain Q is a semi-infinite channel. The problem (2.1)-(2.6) is an uncompletely
posed problem. The general solution of problem (2.1)-(2.6) is given in [16] by the separation of



