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Abstract

In this paper we present a nonmonotone trust region algorithm for general nonlinear
constrained optimization problems. The main idea of this paper is to combine Yuan’s
technique[1] with a nonmonotone method similar to Ke and Han [2]. This new algorithm
may not only keep the robust properties of the algorithm given by Yuan, but also have
some advantages led by the nonmonotone technique. Under very mild conditions, global
convergence for the algorithm is given. Numerical experiments demonstrate the efficiency
of the algorithm.
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1. Introduction

In this article, we consider the following nonlinear programming problem :

mingcp £(2) (1.1)
s.t. ci(z) =0, 1=1,2,...,m; (1.2)

ci(z) >0, t=me+1,...,m, (1.3)

where f(z) and ¢;(z) (i = 1,...,m) are real functions defined in R", at least one of these

functions is nonlinear, and m > m, are two non-negative integers.

In recent years, due to its nice results in real calculations, for example see [3], the nonmono-
tone trust region method has received many successful applications. One of the important
reasons is that the nonmonotone method allows the sequence of iterates to follow the bottom
of curved valleys (a common occurrence in difficult nonlinear problems) much more loosely. On
the other hand, the monotonic reduction at every iteration, namely f(zy4+1) < f(zk), is not the
intrinsic property to the convergence of the trust region method. Especially when the merit
function is nondifferentiable, the nonsmoothness of the merit function may cause unnecessary
reduction of the trust region bound (see [9]), a phenomenon similar to “Maratos effect”. One
technique to overcome this undesirable effect is the “second order step”, but the price paid is
that it must compute the value of the constraints at an auxiliary point and solve an additional
subproblem. However the nonmonotone technique, like the watchdog technique, is a simple
way which is helpful to overcome this difficulty. This is also one of our motivations to use the
nonmonotone technique in our algorithm, as the merit function we use is nondifferentiable.
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Up to now most nonmonotone trust region algorithms are applied in the unconstrained
optimization, for example see [2] [5] [7], except Toint[3], which solves nonlinear optimization
problems subject to convex constraints. In addition, Ke and Han [4] proposed a nonmonotone
trust region method for equality constrained optimization problems based on a continuously
differentiable merit function. In this paper, we try to present a nonmonotone trust region
algorithm with a nondifferentiable merit function which can solve the general constrained op-
timization problems. The numerical results are also reported with this paper.

The paper is organized as follows. We present our algorithm in section 2 and give some
preliminary results in section 3. Global convergence analysis of the algorithm are provided in
section 4. Numerical results are reported in section 5. Conclusions are given in the last section.

2. The Algorithm

Define the Lo, exact penalty function associated with (1.1)—(1.3)

Pri(x) = f(2) + on,ille” (2)]loo, (2.1)

where oy ; is a penalty parameter and c¢(z) = (¢1(z),...,cm(2)), ¢ (z) € R™ with
c; () = ci(x), i=1,2,...,me; (2.2)
¢; (x) = min(c;(2),0), i=me+1,...,m. (2.3)

It is easy to see that ||c™(x)|lc = O if and only if x is a feasible point of (1.1)—(1.3). And
under certain conditions, we can prove that the minimizer of the L., penalty function is also a
solution of the original nonlinear programming problem (1.1)—(1.3).

The subproblem we solve in our algorithm has the following form :

. 1 _
Inin grd+ idTBkd +onill(er + ALd) oo = r,i(d) (2.4)
s-t. ldllee < Ay, (2.5)

where the superscript “-” has the same meaning as (2.2)—(2.3) and 4y € R"*™ is the Jacobi
matrix of the constraints. Assume that an inexact solution sy ; of (2.4)—(2.5) is computed such
that it satisfies

G1,i(0) — Pr,i(Sk,i) > 7€, min[Ay ;. € /|| Bil2], (2.6)

where, 0 < 7 < % is a constant, €x ; = ||gr — Ak Ak, illoo and Ay ; € R™ is the Lagrange mutipliers
at the current point z. Now we give our algorithm.
Algorithm 2.1 (a nonmonotone trust region algorithm)

Step 0 Given xy € R", Ao > 0, € > 0, By € ™" symmetric;
00,0 > 0, o0 >0, € >0, integer M >0, My = M;
1> n > 0, PT(O,U) = PO,O(:EO): k=i= 0, m(O) =0.

Step 1 Solve the subproblem (2.4)-(2.5) for sy ;andatthesametimecomputeey, ;.

Step 2 If e; < € and ||c” (@)oo <€, then stop.
If predi,; = ¢r,i(0) — dr,i(ski) < € and |lc (@)l < €, then stop.
If
predy; < ok Ok, min[Ay ;. [l ||so], (2.7)

then .

Okyitl = 204,i, O it1 = 1 Okyiy Apit1 = Dp4y 2 =1+ 1, (2.8)

go to Step 1;

else  go to Step 3.



