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Abstract

Linear systems associated with numerical methods for constrained optimization are
discussed in this paper. It is shown that the corresponding subproblems arise in most well-
known methods, no matter line search methods or trust region methods for constrained
optimization can be expressed as similar systems of linear equations. All these linear
systems can be viewed as some kinds of approximation to the linear system derived by the
Lagrange-Newton method. Some properties of these linear systems are analyzed.
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1. Introduction

General nonlinear optimization problems have the form:

i 1.1
min f(z) (1.1)
subject to
ci(z) =0, i=1,2,---,me, (1.2)
ci(x) >0, it=me+1,---,m, (1.3)

where m > m, > 0 are two non-negative integers. From the Kuhn-Tucker theory, at a local
solution z* of (1.1)-(1.3), there exist Lagrange multipliers A;(i = 1,2,---,m) such that

Vi@a®) =Y AiVez®) = 0, (1.4)
i=1
Ai >0, XNci(z®) = 0, i=me+1,---,m. (1.5)

Let £ ={1,2,---,m.}, and Z* = {i| ¢;(z*) =0,i=m.+1,---,m} be the index set of all
active inequality constraints. The first order necessary condition (1.4)-(1.5) can be written as

Vi) - > AiVei(z®) =0. (1.6)
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Thus, when the iterates are close to a solution, inequality constraints can be treated as equality
constraints by applying the active set strategy. Therfore, for simplicity, some of the methods
we discussed in the paper are for equality constrained problem

mingew.  f(z) (1.7)
s. t.  c(z)=0. (1.8)

Some methods require the iterates staying in the interior of the feasible region, therefore only
inequality constraints are considered. For these methods, we can only apply to inequality
constrained problems:

mingew.  f(z) (1.9)
s. t. c(x) > 0. (1.10)

Almost all numerical methods for nonlinear optimization are iterative. For a line search
method, a search direction di will be generated and a suitable point zj + agdy is chosen so
that a reduction in a merit function (which is a penalty function) will be obtained. For a trust
region method, a trial step s is computed in a trust region, and some criterion will be used to
decide whether the step s; should be accepted.

For unconstrained problem (m = m, = 0), the Newton’s method is

wpir = xp — (V2 f(21)) 7 V (), (1.11)

which has a local quadratic convergence property if the Hessian matrix is positive definite at the
solution. The Newton step d = —(V? f(z4)) ™'V f(z1) can be obtained by solving the following
linear system

(V2 f(x))d = =V f (). (1.12)

A very important class of methods for unconstrained optimization, quasi-Newton methods,
define the search direction by solving

Bid = =V f(z3), (1.13)

where By, is a quasi-Newton matrix. The linear system determines the next iterate, therefore
plays the essential role for the convergence rate of the method. It is well known([3]) that the
superlinear convergence of quasi-Newton methods is equavalent to

. (Br = V2 f(ag))d |l
lim =0. 1.14

For constrained optimization problems, the search directions or the trial steps are computed
by solving some subproblems. These subproblems are some kinds of approximation to the
orginal optimization problem. Most of these subproblems are simple optimization problems.
For example, the quadratic subproblem of the sequential quadratic programming method for
(1.1)-(1.3) has the form

, 1
min dT'V f(zr) + idTBkd (1.15)

s. t. ci(zy) +dTVei(zy) =
Cl(l‘k) + dTVci(:rk) >

, =1, ,me; (1.16)
, i=me+1,---,m, (1.17)



