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Abstract
It has been observed numerically in [1] that, under certain conditions, all eigenvalues of
the first-order Hermite cubic spline collocation differentiation matrices with unsymmetrical
collocation points lie in one of the half complex planes. In this paper, we provide a
theoretical proof for this spectral result.
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1. Introduction

Hermite cubic spline collocation method has been extensively applied in the numerical so-
lution of ODEs and PDEs due to its ease of implementation and high-order accuracy!?=!. One
of the main features of this method is that the approximate solution takes the form of Hermite
cubic spline(or bicubic spline in 2D). When Hermite cubic spline is applied for discretizing the
differential operator u*) | the so-called Hermite cubic spline collocation differentiation matrices
arise. Eigenvalue analysis of these matrices plays an important part in the stability or conver-
gence analysis of the corresponding collocation algorithms. It also has served as the theoretical
foundation in developing several fast direct algorithms!®—?].

Spectral analysis of second-order Hermite cubic spline collocation differentiation matrices
with Gauss collocation points (a kind of symmetric collocation points) was given analytically
in [6] and consequently in [7,8] for eigenvectors. However, it has been found that Hermite cu-
bic spline collocation differentiation matrices with unsymmetrical collocation points are more
important in practice for stability and singularity considerations®'! 1%, Based on the conden-
sation techniquel!, [1] studied the spectral properties of the second-order Hermite cubic spline
collocation differentiation matrices with arbitrary collocation points. [1] also studied the spec-
tral properties of the first-order Hermite cubic spline collocation differentiation matrices with
symmetric collocation points. Meanwhile, for unsymmetrical collocation points, [1] observed
numerically that all eigenvalues of the first-order Hermite cubic spline collocation differentiation
matrices with Dirichlet boundary conditions or Neumann boundary conditions lie in one of the
half complex planes. This spectral result is of most importance for stability considerations!!!.

The primary purpose of this paper is to provide a theoretical proof for the aforementioned
spectral result of the first-order Hermite cubic spline collocation differentiation matrices. Our
argumentation is based on the condensation technique and Hurwitz’s theorem. The rest of this
paper is arranged as follows. In the second section, we will briefly introduce the Hermite cubic
spline collocation method and generalize the aforementioned spectral result in two theorems.
In the third section, we will prove these theorems theoretically.
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2. Hermite Cubic Spline Collocation Method

Assume that Iy = {z;}Y 1" is a uniform partition that divides interval [0, 1] into N equal
subintervals of length h = 1/N. The Hermite cubic approximation v(z) is defined by

v(z) = &1(s)u; + héa(s)u; + E3(s)uipr + héa(s)uiy,, s €0, 1], (1)

on each subinterval [x;, z;1], ¢ =1, 2, ---, N, where

Ei(s) = (1+25)(1 = 5)%, &a(s) = s(1 = 5)°, &(s) = s*(3—25), &u(s) =s*(s = 1)  (2)
and s = (x — x;)/h. The above definition implies that u; = v(x;) and u} = v'(z;). Denote

Q={(z, y)|0<z<y<1}C R~ (3)

For any given (01, 02) € Q, let Il = {z¢, 2%}, be the set of collocation points, where

x5 =x; +o1h, x5 =x;+03h,i=1,2,---, N. 4)
Consider a collocation approximation to the kth-order differentiation operator u(*) (k=0, 1,2).
Let Ax(k =0, 1, 2) denote the k-order collocation differentiation matrices, satisfying

(Apo) =v®(zf), j=1,2; i=1,2 ---, N. (5)
Obviously the structure of Ay depends on the orderings of the collocation points and the

unknowns for v(z). Suppose [ = 2(i — 1) + 7, and

— i i ! i T i l T
v =[huy, uz, huy, -+, un, huly, huly ,]" or [ur, us, huy, -+, un, huly, uny1]

e = {xila $i27$517 $527 ) x?\’lv x?\@} (6)
Then Aj, with Dirichlet boundary conditions or Neumann boundary conditions has an almost
block diagonal structurel®3'] and Ay is nonsingular!!!. In this paper we only consider A; with
Dirichlet boundary conditions or Neumann boundary conditions, the corresponding spectral
results for A;, with periodical boundary conditions can be found in [10].

Consider the following typical example[*3:1]

ou 9%u ou
— =e—— —p— +d(z, t). 7

ot 68:172 paa: +d(z, 1) (™)
If we use an Euler scheme for time discretization and the Hermite cubic collocation method in
the x-direction, we shall get the following iterative scheme

{ ut = u" 4 (e Ay — pAy)ul™ + 1 d", )

A()U,(n) =u",

where 7 is the time stepsize. The stability depends on the eigenvalues distribution of the
matrix (g As —pA;)Ay". On the one hand it is known that all eigenvlues of A, A" are real and
nonpositive for any collocation points (see [1, 2, 6, 7, 8]). On the other hand, numerical tests
show that the stability of (8) depends on the choice of collocation points when 0 < & << p (see
[1]). This indicates that A4, Aal plays a dominating part in the case of 0 < ¢ << p. Furthermore,
Ay Ayt is the only factor to determine the stability of (8) when e = 0. Thus it is very interesting
and important to study the spectral properties of matrix A; Ay ! In this respect, [1] presented
a number of concrete formulae for the calculation of all eigenvalues of matrix A; Ay' with
symmetric collocation points. As for 4; A, ! with unsymmetrical collocation points, [1] observed



