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Abstract

An interior trust-region-based algorithm for linearly constrained minimization prob-
lems is proposed and analyzed. This algorithm is similar to trust region algorithms for
unconstrained minimization: a trust region subproblem on a subspace is solved in each
iteration. We establish that the proposed algorithm has convergence properties analogous
to those of the trust region algorithms for unconstrained minimization. Namely, every limit
point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions and
at least one limit point satisfies second order necessary optimality conditions. In addition,
if one limit point is a strong local minimizer and the Hessian is Lipschitz continuous in a
neighborhood of that point, then the generated sequence converges globally to that point
in the rate of at least 2-step quadratic. We are mainly concerned with the theoretical prop-
erties of the algorithm in this paper. Implementation issues and adaptation to large-scale
problems will be addressed in a future report.
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1. Introduction

Consider the following linearly constrained minimization problem:

wneléiRI}L flx): R =R (1.1)

subject to Az =b and x > 0,

where f is assumed to be twice continuously differentiable, A € £™*" and b € R™. We are
interested in locating a local minimizer and call such a minimizer a solution to (1.1).

We propose an interior trust region based algorithm. Starting from a strictly feasible point
2% (or, interior point, i.e., Az’ = b and 2° > 0), a sequence {z*} is generated and every z*
remains interior. In each iteration, a trust region subproblem is solved and the iterate z* is
updated. A projected gradient is used as a watch dog to guarantee global convergence. Under
certain assumptions, we establish that the algorithm has convergence properties analogous to
those of the trust region algorithms for unconstrained minimization (see, e.g., [28]). Namely,
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every limit point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions
and at least one limit point satisfies second order necessary optimality conditions. In addition,
if one limit point is a strong local minimizer and the Hessian of f is Lipschitz continuous in a
neighborhood of that point, then the sequence converges globally to that point and the rate of
convergence is at least 2-step quadratic.

Trust region algorithms for unconstrained minimization have been studied by many authors
(see, e.g., [14], [21], [23], [27], and [28]). A trust region algorithm can be briefly described as
follows.

Let & be the current approximation to a solution of min, f(z) and let § > 0 be the current
trust region radius. A solution to the model trust region subproblem

HAlin {q(Az) = f+ VfTAz + %AwTVZfA:U ||Az]] < 4§} (1.2)

is computed. If the actual reduction on the objective function, f(x) — f(x+ Ax), is satisfactory
comparing with f(z) — ¢(Az), the reduction predicted by the quadratic model ¢ in (1.2),
x 4+ Ax is taken as the next approximation, and the trust region radius ¢ is updated for the
next iteration. Otherwise the trust region radius is reduced and a new trust region subproblem
is solved. A reduction is satisfactory if

f(z) - f(z + Ax)
f@ —qda) ="

where n € (0, 1) is a given constant.

Excellent global convergence properties of the trust region algorithms for unconstrained
minimization have been established. In [28] for example, it is shown that every limit point
of the generated sequence satisfies first order conditions and at least one limit point satisfies
second order necessary optimality conditions. In addition, if there is one limit point which is a
strong local minimizer, then the whole sequence converges globally to this point and the rate
of convergence is quadratic. In [27], it is proved that if a reasonable strategy for increasing the
trust region radius is imposed, then every limit point satisfies second order necessary conditions.

Trust region algorithms have also been applied to minimization problems with simple bounds
(see, e.g., [6] and [10]), to equality constrained minimization (see, e.g., [2], [4], [24], and [29]),
and to linearly constrained minimization (see, e.g., [5], [11], and [15]). Similar convergence
results are also obtained.

Among the algorithms for linearly constrained minimization, many are based on the active
set method, such as [3], [12], [13], [16], [18], [19], [22], [25], [26], and [30]. But some are of
interior point type, e.g., [11] and [15].

Interior algorithms have been extensively studied and applied to many optimization prob-
lems, including linear programming, linear complementarity problems, and quadratic program-
ming. A main feature of the interior algorithms is that the number of iterations is not very
sensitive to problem dimension. For references, see, e.g., [20], [31], and [32].

This paper is organized as follows. In Section 2, we first give the optimality conditions for
(1.1) and then motivate and define our algorithm. Convergence properties are established in
Section 3 and 4. Finally, we have some concluding remarks in Section 5.

We use V f(z) to denote the gradient of f(x) and V2 f(x) to denote the Hessian. Given z*
and 2%, we write f* = f(z*), f¥ = f(2*), and use similar notations for Vf and V*f. We use

superscripts to denote the iteration counts and use subscripts to indicate the indices of vector



