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Abstract

In [4] we proved that all Gauss methods areN7(0)-compatible for neutral delay differ-
ential equations (NDDEs) of the form :

y'(t) =ay(t) +by(t —7)+cy'(t—1), t>0,

y(t) = g(t), —r<t<0, (0.1)

where a,b, c are real, 7 > 0, g(¢) is a continuous real valued function. In this paper we are
going to use the theory of order stars to characterize the asymptotic stability properties of
Gauss methods for NDDEs. And then proved that all Gauss methods are N7(0)-stable.
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1. Introduction

In the past, most of the work on the asymptotic stability for delay and neutral delay dif-
ferential equations dealt with finding the stability region independently of the delay term. Al
Mutib[1] and recently N. Guglielmi [8, 9, 10] revisited the investigation of stability region for
a fixed but arbitrary delay term for so called 7(0)-stability. Some results have been pointed
out for DDEs, which have been reeaximined for NDDEs [4]. It has already been shown [7] all
Gauss methods are 7(0)-stability for DDEs. In this paper we pursue our investigation of Gauss
methods in a NDDEs case. In order t simplify the notation, without loosing the generality of
the problem we can fix the delay equal to 1. For the sake of the simplicity, in the sequel we
deal with the following test equation

y'(t) =ay(t) + byt —1) +cy'(t — 1), t>0,

y(t) =g), -1<t<0, (1.1)

where a, b, ¢ are real, 7 > 0, g(¢) is a continuous real valued function. Its characteristic equation
is given by:
A—a—bexp(—A) —chexp(—\) =0. (1.2)

It is known that the set of triplet (a, b, ¢) for which the solution y(t) of (1.1) tend to zero when
t — oo is given by:

Y. = {(a,b,c) € R all root A of (1.2) satisfying Re [\] < 0,|c| < 1}.
It can be rewriten as ¥, = ¥ U E where

E={(a,b,c) eR’, a+p<0 and |c]<1},

Y= {(a, b,c) €ER3, |a| < —b, and Vb2 — a2 < /1 — ¢2 arccos <1C:—£;> with |¢| < 1}.
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with p = —7. This set is bounded in the right by the plane
P ={(a,b,c) € R? a=—bwith a <1—¢,|c| <1} and the transcendental surface

T, = {(a.(8,¢),b.(0,c),c) ER>| € (0,7) and a < 1 —¢,|c| < 1},

with
fcosd — ch cfcosf — 0
a.(0,c) = 2BV "Dy 9,¢) = TV
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Figure 1. Stability region of analytical solution of equation (1.1) for ¢ = 0.5

1.1. Runge -Kutta methods for NDDEs

Let us consider the following s-stage RK method

Yntl =Yn + h Z w K (1.3)

i=1

v v v
KM = f | to +cih, yn + hZainJ’-l“, Yn-m + hzbinf7m+l; Zcinf7m+l ,
i=t i=1 i=1

S
i=1,2,...,s, where h = 7/m, ¢; = Y a;;. Here W = [wi,...,ws]T and the matrix A =
j=1
[aij]] j—; define a RK method for ODEs. [3, 6, 13]. The second argument in f can be interpreted
as an approximation to y(t) at the intermediate point ¢, + c¢;h. Similarly the third argument
in f can be interpreted as an approximation to y(t,—m, + ¢;h) and the fourth to y'(tn—m + c;jh)
usually b;; = wj(c;) and ¢;; = wi(c;) where w;(f), i = 1,...s are polynomials which define
the natural continuous extension of RK method, i.e. polynomials such that the approximate



