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Abstract

A mixed Chebyshev spectral-finite element method is proposed for solving two-dimensional
unsteady Navier-Stokes equation. The generalized stability and convergence are proved.
The numerical results show the advantages of this method.
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1. Introduction

Spectral method has been used successfully in computational fluid dynamics. For semi-
periodic problems, we can use mixed Fourier-Chebyshev spectral method, Fourier spectral-finite
difference method and Fourier spectral-finite element method (see[1-5]). As we know, many
problems are fully non-periodic. But the sections of domains might be rectangular in certain
directions. For example, the fluid flow in a cylindrical container. So we proposed Chebyshev
spectral-finite element method(see[6]). In this paper, we develop mixed Chebyshev spectral-
finite element method for two-dimensional unsteady Navier-Stokes equation.

2. The Scheme

Let I, ={z/ —1<2 <1}, I, ={y/0 <y <1} and Q = I, x I, with the boundary 0Q.
The speed vector and the pressure are denoted by U = (Uy,Us) and P respectively. v > 0 is

the kinetic viscosity. Up(z,y) and f(z,y,t) are given functions. Let T' > 0,0, = %,@ = 3%,
and 0, = 8%. The Navier-Stokes equation is as follows
OU + 0, (U1U) + 0,(UsU) + VP —vV3U = f, in Qx (0,71,
VZP+®(U)=V-§, in Q x (0,7, (2.1)

U |t=0= Uy, in QUoN

where

Q(U) = 2(ayUlaa:UZ - azUlayUz)

Suppose that the boundary is a non-slip wall and so U = 0 on 9. There is no boundary
condition for the pressure. But if we use the second equation of (2.1) to evaluate the pressure,
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then we need a non-standard boundary condition. We assume approximately that %—I; =0 on
09). For fixing the value of pressure, we require that

u(P,t) = //QP(:U,y,t) dedy =0, Vte[0,T].

Clearly for each time ¢ and U, the second equation of (2.1) is a Neumann problem for P. It
can be verified that u(V - f — ®({U),t) = 0 and so this problem is consistent(see[7]). The
main advantage of this model is that the derivation of the second formula of (2.1) implies the
incompressible condition automatically.

Let D be an interval (or a domain) in R*(or R?). L*(D),H"(D) and H{(D)(r > 0) denote
the usual Hilbert spaces with the usual inner products and norms. We also define

zﬂw=m6ﬁwwAmW=m
Let w(z) = (1 — 22)"2 and

1
quhz/uw@z|Mmh=mwm,

L:(I.) = {v/v is measurable and ||v||,.1, < oo}

Furthermore

(w%z//wwmw olle = @,0)2,
Q

L2(Q) = {v/v is measurable and ||v||, < oo}
Now we construct the scheme. For any positive integer IV, we denote by Py the set of all
polynomials of degree < N, defined on R'. Let
Vn(le) ={v(x) € Pn / wv(=1) =v(1) =0},
dv _dv

Wi(L) = {v(@) € Px | -(=1) = (1) = 0}.

Next, we divide I, into M} subintervals with the nodes 0 = yp < y1 < --- < yar, = 1. Let

I = (yi—1,y), i =y —yi—1, h = max h; and ' = min h;. Assume that there exists a
1<I< My 1<I< M,

positive constant d independent of the divisions of I, such that h/h’ < d. Let
Sh(Ly) = {v(y) /v(Y) [, € Pr, L <T< My}, S(I,) = SE(I,) () Hy (L)

The trial function space X]’ﬁnh(ﬂ) for the speed and the trial function space anh(ﬂ) for the
pressure are defined by

XN () = V(o) @ SE(L,), Y a(Q) = {Wn (L) ® (Sh(L) [ H' (1))} ) Ls(Q).
In addition, let )
Z3 () = {Pn-a(Le) © (SE(L,) [V H L)} ) L5 ().

We denote by Py the L2 (I,)— orthogonal projection from L2 (I,) onto Vi (I;), II} is the
piecewise Lagrange interpolation of order k > 1, from C(I,) onto Sf(I,) () H*(I,). Furthermore
let Py @ L2(Q) — Xﬁnh(Q) be the orthogonal projection, i.e., for any v € L2 (1), the projection
Py pv € X ,(9) and

(v—=Pnpv,u)y =0, Vue le%7h(Q).

Let 7 be the mesh size in time ¢ and S, = {t =17 / 0 <1 < [L]}. Let

wit) = > (ult +7) — u(t)).



