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Abstract

A global finite element nonlinear Galerkin method for the penalized Navier-Stokes
equations is presented. This method is based on two finite element spaces Xy and X,
defined respectively on one coarse grid with grid size H and one fine grid with grid size
h << H. Comparison is also made with the finite element Galerkin method. If we choose
H = 0(5:71/4}7,1/2)7 € > 0 being the penalty parameter, then two methods are of the same
order of approximation. However, the global finite element nonlinear Galerkin method
is much cheaper than the standard finite element Galerkin method. In fact, in the finite
element Galerkin method the nonlinearity is treated on the fine grid finite element space X,
and while in the global finite element nonlinear Galerkin method the similar nonlinearity
is treated on the coarse grid finite element space Xy and only the linearity needs to be
treated on the fine grid increment finite element space W}. Finally, we provide numerical
test which shows above results stated.
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1. Introduction

In the numerical simulation of the Navier-Stokes equations one encounters three serious
difficulties in the case of large Reynolds numbers: the treatment of the incompressibility con-
dition divu = 0, the treatment of the nonlinear terms and the large time integration. For the
treatment of the incompressibility condition, one use the penalty method in the case of finite
elements [1-2] and for the treatment of the nonlinear terms and the large time integration, one
use the nonlinear Galerkin method in the framework of finite elements [3]. However, in this
work the finite element nonlinear Galerkin method is only used in the time interval [tg, c0) and
the finite element Galerkin method is used in the finite time interval [0, o], to > 0 is finite.

Our purpose here is to present a new global finite element nonlinear Galerkin method for
the penalized Navier-Stokes equations in the framework of finite elements. This numerical
simulation is done in the time interval [0, c0). Moreover, we analyze the convergence rates of the
finite element Galerkin method and the global finite element nonlinear Galerkin method. If H =
O(e='/*h'/?) is chosen then the global finite element nonlinear Galerkin method provides the
same order of approximation as the finite element Galerkin method, where € > 0 is the penalty
parameter. However, in the global finite element nonlinear Galerkin method, the nonlinearity
is treated on the coarse grid finite element space Xy and only the linearity is treated on the
fine grid increment finite element space Wj; while in the finite element Galerkin method the
nonlinearity needs to be treated on the fine grid finite element space X,. Hence, under the
convergence rate of same order, the global finite element nonlinear Galerkin method is much
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cheaper to implement computationally than the finite element Galerkin method. Finally, we
provide numerical test which shows the above results stated.

2. The Penalized Navier-Stokes Equations

Let Q C R? be a bounded open set with Lipschitz boundary I' = 2. The Navier-Stokes
equations of incompressible flows reads

% —vAu+ (u-V)u+gradp = f, V(z,t) € A x R, (2.1)

divu =0, V(z,t) € Q2 x R", (2.2)

where u = u(z,t) is the velocity vector, p = p(x,t) is the pressure, v > 0 is the kinematic
viscosity and f represents the volume driving forces, for simplicity, the constant density p was
taken equal to 1.

For the penalized equations we suppress the pressure p and the incompressibility equation
(2.2) and introduce in (2.1) a penalty term, Zgrad divu, e > 0 the penalty parameter. Hence,
we obtain the penalized Navier-Stokes equations:

Ou.
ot

1
—vAuc + (ue - V)ue + E(divus)ug
- ggraddivug =f, V(z,t) e A x RT. (2.3)

1
We have also introduce the supplementary nonlinear term 3 (divu.)u. which make (2.2) well

set.
The equation (2.3) is supplemented by boundary and initial conditions:
ue =0, on[' x R, (2.4)
ue(z,0) = up(x), Vo € Q. (2.5)

We introduce the basic spaces:
Y = L*(Q)?, X = Hj(Q)?
provided with the scalar products and norms
(u,v) = [u(z)-v(z)de, |u|= (u,u)/? Yu,v €Y,
((u,v)) 2({ gradu - gradvdz, ||ul| = ((u,u))*/?, Yu,v € X.

Moreover, we also introduce the following operators:

1
Au = —Au, B(u,v) = (u-V)v + §(divu)v,

Du = Kgrad divu.
€

It is well-known [1-2] that A is a linear unbounded, self-adjoint positive closed operator with
the domain

D(A) = X N H*(Q)?,
and the inverse A~! of A is a compact self-adjoint operator in Y. Then, we obtain the abstract

equation
du.

dt

+ vAu. + Du, + B(u.,u.) = f. (2.6)



