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Abstract

This paper is concerned with the initial value problem for non-stationary Stokes flows,
under a certain non-linear boundary condition which can be called the leak boundary
condition of friction type. Theoretically, our main purpose is to show the strong solvability
(i.e.,the unique existence of the L?—strong solution) of this initial value problem by means
of the non-linear semi-group theory originated with Y. Kémura. The method of analysis
can be applied to other boundary or interface conditions of friction type. It should be
noted that the result yields a sound basis of simulation methods for evolution problems
involving these conditions.
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1. Introduction

The purpose of this paper is to consider the initial value problem for the Stokes flow under
nonlinear boundary conditions of friction type, which will be described below in §2 together
with our motivations arising from applications, and to show that the solvability can be obtained
immediately by means of the non-linear semigroup theory (NSG theory) which had originated
from the celebrated work by Y. Komura ([12]) in 1967 and was elaborated by many authors
(for a concise explanation of the theory, we refer to Sections 6 and 7 of Chapter XIV of Yosida
(113)).

In order to apply the NSG theory for integration of the initial boundary value problem, a
crucial step is to define a multi-valued operator A in a Hilbert space so that A is maximally
accretive (m-monotone) and —A plays the role of the generator of the NSG relevant to the
initial boundary value problem. Below we shall see that the property of being multi-valued
of our generator is closely related with involvement of the pressure in the Stokes equation.
This observation might be interesting as a new direction of applicability of the subtle NSG
theory. On the other hand, once the NSG theory applies, we could have a better insight into
the mathematical structure of the problem, which would lead to a reliable basis in organizing
approximating methods. In fact, we have the product formula for the NSG (the solution
operator of the problem) as is stated in §5.

Our study of the Stokes equation under the boundary conditions of friction type goes back
to the author’s series of lectures at College de France in October of 1993. Since then, as to the
stationary flow, i.e., to the boundary value problem, the existence and uniqueness of the H!
class solution has been established by means of the formulation through variational inequalities
by the author and his collaborators (Fujita [6], Fujita-Kawarada [7], Fujita-Kawarada- Sasamoto
[8]). This will be mentioned in §3.
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Recently, Norikazu Saito succeeded in showing the H? regularity of the solution of the
boundary value problem, following suggestions given by H. Brezis and the author ([14]). His
result will be also described in §3.

N. Saito’s regularity result has led the author to the definition below of the required generator
to match the NSG theory. This and integration of the initial problem with the aid of NSG will
be done in §5 after we recall a core part of Komura’s theory of NSG in §4.

2. Description of the Target Problem

First of all, let us write down the initial boundary value problem in question (abbr. S-IVP).

Usual symbols are employed: u = u(t,x) and p = p(¢, ) stand for the flow velocity and the
pressure, respectively, at time ¢ and point z. x ranges over a bounded domain 2 in R™(n = 2,3)
bounded by smooth boundary I' = 0f). The positive constant ¥ means the viscosity.

Time-dependent Stokes system
For t > 0 and z € Q, {u,p} should satisfy

ou
divue = 0,

where f stands for the given external force.
The initial condition is given by

u(0,) = uo in Q. (2.2)

In order to avoid non-essential complexity in phrasing, we assume that ' is composed of two
separated compact component I'g and S, and that on I'y the homogeneous Dirichlet boundary
condition is imposed; namely,

u=0 on I'y. (2.3)

On the other hand, we shall impose
a certain boundary condition of friction type on S, (2.4)

which will be specified soon.

2.1. Motivations for the BC of Friction Type

So far almost exclusively, the Dirichlet boundary condition (adhesion to solid surfaces) has
been considered for motions of viscous incompressible fluids in hydrodynamics as well as in
mathematics. However, there exist some flow phenomena, modeling of which might require in-
troduction of slip and/or leak boundary conditions in reality or apparently (or metaphorically).

As examples, we can refer to the following; (1) flow through a drain or canal with its bottom
covered by sherbet of mud and pebbles. (2) flow of melted iron coming out from a smelting
furnace. (3) avalanche of water and rocks. (4) blood flow in a vein of an arterial sclerosis
patient. (5) polymer-polymer welding and sliding phenomena as studied by P.G.de Gennes.

Furthermore, with some of these examples one observes that some fragile state of the surface
or existence of sherbet zone allows slipping of the fluid along the surface, while the fluid does
not slip as long as the “force of stream” is below a threshold.

In order to form a mathematical model of such slip phenomena, introduction of nonlinear
slip boundary conditions of friction type (similar to Coulomb’s law of friction) seems to be
suitable.

Similarly, leak boundary conditions would be required when we want to model flow problems
involving a leak of the fluid through the surface or penetration into the adjacent media. For
instance, (1) flow through a net or sieve, e.g., a butterfly net. (2) flow through filter, e.g., a



