ON THE ERROR ESTIMATE OF LINEAR FINITE ELEMENT APPROXIMATION TO THE ELASTIC CONTACT PROBLEM WITH CURVED CONTACT BOUNDARY*1)

Lie-heng Wang

(State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

In this paper, the linear finite element approximation to the elastic contact problem with curved contact boundary is considered. The error bound $O(h^{\frac{1}{2}})$ is obtained with requirements of two times continuously differentiable for contact boundary and the usual regular triangulation, while I.Hlavacek et. al. obtained the error bound $O(h^{\frac{3}{4}})$ with requirements of three times continuously differentiable for contact boundary and extra regularities of triangulation (c.f. [2]).

Key words: Contact problem, Finite element approximation.

1. Preliminary

The error estimate of linear finite element approximation to the elastic contact problem with curved contact boundary was considered in [2], in which the authors obtained the error bound of $O(h^{\frac{3}{4}})$ with a much complex proof, requirement of three times continuously differentiable for contact boundary and extra regularities of triangulation (c. f. [2, Theorem 3.3, p.149]). In this paper, we obtained the error bound of $O(h^{\frac{1}{2}})$ with only requirement of two times continuously differentiable for contact boundary and the usual regular triangulation (c.f. [1]).

According to the notations in [2], let $\Omega = \Omega' \cup \Omega''$.

$$\mathcal{H}^{1}(\Omega) = \{ v = (v', v'') : v' \in [H^{1}(\Omega')]^{2}, v'' \in [H^{1}(\Omega'')]^{2} \},$$

$$V = \{ v \in \mathcal{H}^{1}(\Omega) : v' = 0 \text{ on } \Gamma_{u}, v''_{n} = 0 \text{ on } \Gamma_{0} \},$$

$$K = \{ v \in V : v'_{n} + v''_{n} \le 0 \text{ on } \Gamma_{k} \},$$

where $v_n = v_i n_i$ the normal component of the displacement, then the elastic contact problem with curved contact boundary is as follows (c.f.Fig.1):

$$\begin{cases}
\text{to find} \quad u \in K, \quad \text{such that} \\
A(u, v - u) \ge L(v - u) \quad \forall v \in K,
\end{cases}$$
(1.1)

^{*} Received February 14, 1996.

¹⁾The Project was supported by National Fundation of Sciences of China.

562 L.H. WANG

where

$$A(u,v) = \int_{\Omega} \sigma_{ij}(u)e_{ij}(v)dx,$$

$$L(v) = \int_{\Omega} F_i v_i dx + \int_{\Gamma_s} P_i v_i ds,$$

 $e_{ij}(v) = \frac{1}{2}(\partial_j v_i + \partial_i v_j), i, j = 1, 2,$ -the tensor field of strain,

 $\sigma_{ij} = c_{ijkm}e_{km}(v), i, j = 1, 2, -$ the tensor field of stress ditermined by the generalized Hook's Law,

and $c_{ijkm} = c_{jikm} = c_{kmij}$,

$$c_{ijkm}(x)e_{ij}e_{km} \ge c_0e_{ij}e_{ij},\tag{1.2}$$

holds for all symmetric matrices $(e_{ij})_{1 \leq i,j \leq 2}$ and all $x \in \Omega$. It is well known that the equivalent boundary value problem of (1.1) is as follows (c.f.[2]):

$$-\partial_j \sigma_{ij}(u) = F_i, \quad \text{in } \Omega = \Omega' \cup \Omega'';$$
 (1.3)

$$\begin{cases} u = 0 & \text{on } \Gamma_u, \\ \sigma_{ij}^M(u)n_j^M = P_i^M, M = ', '', & \text{on } \Gamma_{\sigma}^M \subset \partial \Omega^M, \\ u_n = 0, T_t = 0, & \text{on } \Gamma_0; \end{cases}$$
 (1.4)

$$\begin{cases} u'_n + u''_n \le 0, & T'_n = T''_n \le 0, \\ (u'_n + u''_n)T'_n = 0, & \text{on } \Gamma_k, \\ T'_t = T''_t = 0, \end{cases}$$
 (1.5)

where $T_n = \sigma_{ij} n_j n_i, T_t = \sigma_{ij} n_j t_i, n^M = (n_1^M, n_2^M)$ and $t^M = (t_1^M, t_2^M)$ are the outer unit normal and the corresponding unit tangential to $\partial \Omega^M$.

Here and what follows a repeated index always means summation over the number 1, 2.

Consider the linear finite element approximation to the problem (1.1). Let \mathcal{T}'_h and \mathcal{T}''_h be the regular triangulations of Ω' and Ω'' with consistency, which means that the node on Γ_k is the common node of \mathcal{T}'_h and \mathcal{T}''_h (c.f. Fig.2). Let V_h be the linear finite element space corresponding to V, which particularly means that $v'_h = 0$ on Γ_u and $v''_{hn} = 0$ on Γ_0 for $v_h \in V_h$, and

$$K_h = \{ v_h \in V_h : (v'_{hn} + v''_{hn})(P) \le 0 \quad \forall \text{ nodes } P \in \Gamma_k \},$$
 (1.6)

then the linear finite element approximation to the problem (1.1) is as follows:

$$\begin{cases}
\text{to find} \quad u_h \in K_h, & \text{such that} \\
A(u_h, v_h - u_h) \ge L(v_h - u_h) & \forall v_h \in K_h.
\end{cases}$$
(1.7)