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Abstract

In this paper, we choose the trigonometric rational functions as wavelet filters
and use them to derive various wavelets. Especially for a certain family of wavelets
generated by the rational filters, the better smoothness results than Daubechies’
are obtained.

Key words: Wavelet, Filter, Rational filter, Regularity.

1. Introduction

We denote by ¢(x) a scaling function which satisfies

¢(x) = Z hrd(2x — k) (Z is the integer set). (1)
kez

The Fourier transform of equation (1) is

¢ =H(w/2)p(w/2) (2)

where ¢(w) is the Fourier transform of ¢(z) and

1 .
H(w) = 2 > hpe R
keZ

We call H(w) a filter.It satisfies
H0)=1, [Hw)|*+]|Hw+m) =1 (3)

When the expansion coefficient sequence { hy} of H(w) is given, the wavelets corre-
sponding to the H (w) can be derived. For the H(w) which is a trigonometric polynomial
(in this case, we call H(w) a polynomial filter), Daubechies has given the methods gen-
erating wavelets as well as the estimates of regularity!![2],

In this paper, we choose H(w) to be a trigonometric rational function to generate
wavelets and give relative methods and theorems. For I-type rational filters (see the
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second section),they include Daubechies’ filters. And for II-type rational filters,they
include B spline wavelet filters and have linear phases.Especially for a certain fam-
ily of wavelets generated by the rational filters, the better smoothness results than
Daubechies’ are obtained.

2. Rational Filters

For a filter )
1 —iw .
H(w) = (——)VP(e™™)
where F(e ™) = dokez fre ™ Daubechies has given the conditions of existence of
wavelets!!:
(n sup | F(e™) |< 2V
weR
(IT) Z | fel|k|°< oo for a certain € >0
kez

On the basis of the two conditions, we will study how to construct wavelets by a rational
filter.

Definition For a filter H(w) = ((1 + e=™)/2)¥ F(e=*), when F(z) is a rational
function or the modulus of a rational function, we call H(w) a rational filter.

Assume P(z) and Q(z) are relatively prime polynomials with real coefficients. Then
| P(e7™)/Q(e~™) | is a rational function in cosw. Riesz’ lemma allow us to conclude
that there is a real coefficient rational function F'(z) such that

) P G |- @
Let g
e P20y ®)

where S(y) and T'(y) are positive polynomials in the intervel [0,1]. For the given S(y)

and T'(y), the following two types of the rational filters can be determined by (5):

1+4ew
2

1+4ew

Hiw) = ( ;

YWF(e ™), Hp(w)=( YW F(e ™).
They are respectively called I-type rational filters and II-type rational filters. For II-
type rational filters, H;;(—w) = e'N“ Hy(w). This implies that II-type rational filters
have linear phases.We have known that the function F(e~)s in the filters of orthogonal
B spline wavelets are the moduli of the trigonometric rational functions(. Therefore,the
wavelets derived by Il-type rational filters can include B spline wavelets.

For a I-type rational filter, we may use power series expansion to obtain sequence

{hi}. By the property of power series, we know that the condition (II) can be satisfied.



