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GENERALIZED DIFFERENCE METHODS ON ARBITRARYQUADRILATERAL NETWORKS�Yong-hai Li Rong-hua Li(Institute of Mathematis, Jilin University, Changhun 130023, China)AbstratThis paper onsiders the generalized di�erene methods on arbitrary networksfor Poisson equations. Convergene order estimates are proved based on some apriori estimates. A supporting numerial example is provided.Key words: Quadrilateral elements, Dual grids, Bilinear funtions, Generalizeddi�erene methods, Priori estimates, Error estimates.1. IntrodutionConsider the boundary value problem of the Poisson equation( ��u = f(x; y); (x; y) 2 
 (1:1)u = 0; (x; y) 2 � = �
 (1:2)where 
 is a onvex polygon regon; � = �
 the boundary of 
 and f(x; y) a knownfuntion on 
.The generalized di�erene methods on quadrilateral networks for ellipti equationsare proposed in [11℄, where the onvergene order estimates are given for retangularnetworks. Quadrilateral networks are strutured networks, the so alled "�nite volumemethod on strutured networks" (f. [7℄ - [9℄), a popular method in omputational uid,is idential to the generalized di�erene method in [3℄(f.[4℄ and [11℄). The generalizeddi�erene methods have the same onvergene orders as the orresponding �nite elementmethods, but they require less omputational expenses, and keep the mass onservation(f. [5℄). The aim of this paper is to provide a theory for the generalized di�erenemethod on arbitrary quadrilateral networks, and to obtain the optimal onvergeneorder estimates. A generalized di�erene method with bilinear element is onstrutedin x2. Some a priori estimates are dedued in x3. x4 is devoted to the error orderestimates. Finally, a numerial example is given in x5 to show the e�etiveness of themethod.� Reeived February 29, 1998.



654 Y.H. LI AND R.H. LI2. Generalized Di�erene MethodsLet 
 be a onvex polygonal region. Deompose 
 into the union of �nite num-ber of stritly onvex and nonoverlapping quadrilateral elements.Two nodes are alledadjaent if they are the endpoints of the same side of an element. The set of all thequadrilateral elements is denoted by Th, where h is the maximum length of all the sides.Connet the midpoints of the opposite side of a quadrilateral element, and all thejoint of the two onneting lines the averaging enter. Now we onstrut the dual sub-division of Th. Let P be an inner node as in Fig.1; 2PP1P2P3, 2PP3P4P5, 2PP5P6P7,2PP7P8P1 are the quadrilaterals with a ommon node P ; and Q1; Q2; Q3; Q4 re-spetively are their averaging enter. Let M1, M2, M3, M4 be the midpoints ofPP1; PP3; PP5; PP7. Connet M1; Q1, M2; Q2, M3; Q3, M4; Q4, M1, suessively toobtain a polygonal region K�P surrounding P , alled a dual element. The set of all thedual elements is denoted by T �h , and alled the dual subdivision (f. [11℄ or [5℄).

Fig. 1Let �
h be the set of nodes of Th; Æ
h= �
h � �
 the set of the inner nodes; and
�h the set of nodes of the dual grid. Denote by KQ the quadrilateral element withaveraging enter Q 2 
�h, and by SQ; S�P the areas of the element KQ and the dualelement K�P respetively.Suppose Th and T �h are quasi-uniformly, that is, there exist onstants C1; C2 > 0independent of h, suh that C1h2 � SQ � h2; Q 2 
�h (2:1)1C1h2 � S�P � C2h2; P 2 �
h (2:1)2Remark 1. (2:1)2 an be dedued from (2:1)1 under the above assumptions on thedual grid.In order to de�ne the trial funtion spae Uh, we take a unite square K̂ = Ê=[0,1℄�[0,1℄ on (�; �) plane as the referene element. For any onvex quadrilateral


