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Abstract

This paper considers the generalized difference methods on arbitrary networks
for Poisson equations. Convergence order estimates are proved based on some a
priori estimates. A supporting numerical example is provided.
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1. Introduction

Consider the boundary value problem of the Poisson equation

—Au = f(ray)v (l’,y) € (11)
u=0, (z,y) e I' = 00 (1.2)

where 2 is a convex polygon regon; I' = 92 the boundary of Q and f(z,y) a known
function on ).

The generalized difference methods on quadrilateral networks for elliptic equations
are proposed in [11], where the convergence order estimates are given for rectangular
networks. Quadrilateral networks are structured networks, the so called ”finite volume
method on structured networks” (cf. [7] - [9]), a popular method in computational fluid,
is identical to the generalized difference method in [3](cf.[4] and [11]). The generalized
difference methods have the same convergence orders as the corresponding finite element
methods, but they require less computational expenses, and keep the mass conservation
(cf. [5]). The aim of this paper is to provide a theory for the generalized difference
method on arbitrary quadrilateral networks, and to obtain the optimal convergence
order estimates. A generalized difference method with bilinear element is constructed
in §2. Some a priori estimates are deduced in §3. §4 is devoted to the error order
estimates. Finally, a numerical example is given in §5 to show the effectiveness of the
method.
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2. Generalized Difference Methods

Let © be a convex polygonal region. Decompose €2 into the union of finite num-
ber of strictly convex and nonoverlapping quadrilateral elements.Two nodes are called
adjacent if they are the endpoints of the same side of an element. The set of all the
quadrilateral elements is denoted by T}, where h is the maximum length of all the sides.

Connect the midpoints of the opposite side of a quadrilateral element, and call the
joint of the two connecting lines the averaging center. Now we construct the dual sub-
division of T},. Let P be an inner node as in Fig.1; OPP, P, Py, OPP3; Py P;, OPPs Ps Py,
OPP;PgP; are the quadrilaterals with a common node P; and Qq,Q2,Q3,Q4 re-
spectively are their averaging center. Let M, My, M3, M4 be the midpoints of
PPy, PP;, PPs, PP;. Connect My, Q1, Mo, Qo, M3, Q3, My, g, My, successively to
obtain a polygonal region K7J, surrounding P, called a dual element. The set of all the
dual elements is denoted by T}, and called the dual subdivision (cf. [11] or [5]).

Fig. 1

Let €, be the set of nodes of T}; Solh: Q) — 0N the set of the inner nodes; and
2y the set of nodes of the dual grid. Denote by K¢ the quadrilateral element with
averaging center ) € Qf, and by Sg,Sp the areas of the element Kg and the dual
element K7, respectively.

Suppose T}, and T} are quasi-uniformly, that is, there exist constants C1,Cy > 0
independent of h, such that

C1h? < So < h?*, Qe (2.1)

C1h? < Sp < Coh?, P e, (2.1),

Remark 1. (2.1)5 can be deduced from (2.1); under the above assumptions on the
dual grid.

In order to define the trial function space U, we take a unite square K = E=
[0,1]x[0,1] on (£,n) plane as the reference element. For any convex quadrilateral



