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GENERALIZED DIFFERENCE METHODS ON ARBITRARYQUADRILATERAL NETWORKS�Yong-hai Li Rong-hua Li(Institute of Mathemati
s, Jilin University, Chang
hun 130023, China)Abstra
tThis paper 
onsiders the generalized di�eren
e methods on arbitrary networksfor Poisson equations. Convergen
e order estimates are proved based on some apriori estimates. A supporting numeri
al example is provided.Key words: Quadrilateral elements, Dual grids, Bilinear fun
tions, Generalizeddi�eren
e methods, Priori estimates, Error estimates.1. Introdu
tionConsider the boundary value problem of the Poisson equation( ��u = f(x; y); (x; y) 2 
 (1:1)u = 0; (x; y) 2 � = �
 (1:2)where 
 is a 
onvex polygon regon; � = �
 the boundary of 
 and f(x; y) a knownfun
tion on 
.The generalized di�eren
e methods on quadrilateral networks for ellipti
 equationsare proposed in [11℄, where the 
onvergen
e order estimates are given for re
tangularnetworks. Quadrilateral networks are stru
tured networks, the so 
alled "�nite volumemethod on stru
tured networks" (
f. [7℄ - [9℄), a popular method in 
omputational 
uid,is identi
al to the generalized di�eren
e method in [3℄(
f.[4℄ and [11℄). The generalizeddi�eren
e methods have the same 
onvergen
e orders as the 
orresponding �nite elementmethods, but they require less 
omputational expenses, and keep the mass 
onservation(
f. [5℄). The aim of this paper is to provide a theory for the generalized di�eren
emethod on arbitrary quadrilateral networks, and to obtain the optimal 
onvergen
eorder estimates. A generalized di�eren
e method with bilinear element is 
onstru
tedin x2. Some a priori estimates are dedu
ed in x3. x4 is devoted to the error orderestimates. Finally, a numeri
al example is given in x5 to show the e�e
tiveness of themethod.� Re
eived February 29, 1998.
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e MethodsLet 
 be a 
onvex polygonal region. De
ompose 
 into the union of �nite num-ber of stri
tly 
onvex and nonoverlapping quadrilateral elements.Two nodes are 
alledadja
ent if they are the endpoints of the same side of an element. The set of all thequadrilateral elements is denoted by Th, where h is the maximum length of all the sides.Conne
t the midpoints of the opposite side of a quadrilateral element, and 
all thejoint of the two 
onne
ting lines the averaging 
enter. Now we 
onstru
t the dual sub-division of Th. Let P be an inner node as in Fig.1; 2PP1P2P3, 2PP3P4P5, 2PP5P6P7,2PP7P8P1 are the quadrilaterals with a 
ommon node P ; and Q1; Q2; Q3; Q4 re-spe
tively are their averaging 
enter. Let M1, M2, M3, M4 be the midpoints ofPP1; PP3; PP5; PP7. Conne
t M1; Q1, M2; Q2, M3; Q3, M4; Q4, M1, su

essively toobtain a polygonal region K�P surrounding P , 
alled a dual element. The set of all thedual elements is denoted by T �h , and 
alled the dual subdivision (
f. [11℄ or [5℄).

Fig. 1Let �
h be the set of nodes of Th; Æ
h= �
h � �
 the set of the inner nodes; and
�h the set of nodes of the dual grid. Denote by KQ the quadrilateral element withaveraging 
enter Q 2 
�h, and by SQ; S�P the areas of the element KQ and the dualelement K�P respe
tively.Suppose Th and T �h are quasi-uniformly, that is, there exist 
onstants C1; C2 > 0independent of h, su
h that C1h2 � SQ � h2; Q 2 
�h (2:1)1C1h2 � S�P � C2h2; P 2 �
h (2:1)2Remark 1. (2:1)2 
an be dedu
ed from (2:1)1 under the above assumptions on thedual grid.In order to de�ne the trial fun
tion spa
e Uh, we take a unite square K̂ = Ê=[0,1℄�[0,1℄ on (�; �) plane as the referen
e element. For any 
onvex quadrilateral


