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Abstract

In this paper, we will prove by the help of formal energies only that one can
improve the order of any symplectic scheme by modifying the Hamiltonian symbol
H, and show through examples that this action exactly and directly simplifies
Feng’s way of construction of higher-order symplectic schemes by using higher-

order terms of generating functions.
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1. Introduction

First of all, let’s recall the definitions of symplectic schemes, revertible schemes,
and Feng’s way of construction of symplectic methods via generating functions.

As well-known, the phase flow {g',t+ € R} of any Hamiltonian system

dz

- = JIVH(Z), Ze R*" (1)
0, -1,
I, 0p
operator) is a one-parameter group of canonical (symplectic) diffeomorphisms, i.e., the

(where J = l ], H : R’ — R' is a smooth function, and V is the gradient

Jacobian of g' with respect to Z satisfies
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=J. (2)
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for any H and any t (see [1]).
Equation (2) is also called symplectic condition.
Definition 1. A difference scheme compatible with (1) is said to be symplectic iff

its step-transition operator G7 : R*™ — R?" is symplectic, i.e.,

T
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for any Hamitonian H and any sufficiently small step-size T (see [2]).

One kind of most important symplectic schemes are the time-revertible (or simply,
revertible) one.

Definition 2. A difference scheme compatible with (1) is said to be revertible
(or reversible or time-revertible or time-reversible) iff its step-transition operator G7 :
R?" — R satisfies

G ToG" =id. (4)

for any Hamitonian H and any sufficiently small step-size T (see [3-5]).
The following is the technique (due to Feng et al) of construction of symplectic

methods via generating functions (see [6]).

A B

Suppose 4n X 4n matrix M = l D ] (where A, B, C, D are 2n X 2n matrices)

C
satisfies:
0O -1 —J 0]
MT 2n M = 1 2n M (5)
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for some g1 # 0. The inverse of M is denoted by M~ = l o oo | If Hamiltonian

H(Z) depends analytically on Z, then the generating function ¢(w,t) is expressible as
a convergent power series in ¢ for sufficiently small |¢|, with the recursively determined

coefficients:
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p(w,t) = > ) (w)tk,
k=0
6O () = %wTNw, N=(A+B)(C+D) ",
¢ (w) = —pH(Bw), E=(C+D) ', (6)
for £ > 1,
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