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COMBINED LEGENDRE SPECTRAL-FINITE ELEMENTMETHOD FOR THE TWO-DIMENSIONAL UNSTEADYNAVIER-STOKES EQUATION�Song-nian He Cai-ping Yang(Department of Basi Courses, Civil Aviation University of China, Tianjin 300300, China)AbstratA ombined Legendre spetral-�nite element approximation is proposed forsolving two-dimensional unsteady Navier-Stokes equation. The arti�ial ompress-ibility is used. The generalized stability and onvergene are proved stritly. Somenumerial results show the advantages of this method.Key words: Navier-Stokes equation, Combined Legendre spetral-�nite elementapproximation. 1. IntrodutionThere is muh literature onerning numerial solutions of Navier-Stokes equations,e.g., see [1-4℄. For semi-periodi problems, some author used ombined Fourier spetral-�nite di�erene and Fourier spetral-�nite element approximations (see[5-8℄). In uiddynamis, most of pratial problems are fully non-periodi. But the setions of domainmight be retangular in ertain diretions. For example, the uid ow in a ylindrialontainer. In this paper, we onsider ombined Legendre spetral-�nite element ap-proximation for the two-dimensional, non-periodi, unsteady Navier-Stokes equation.The method in this paper an raise the auray by Legendre spetral approximationin some diretions and so saves work. On the other hand, suh approximation is suit-able for omplex geometry in the remaining diretions. Surely it is not neessary touse this approah for suh two-dimensional problem. But it is easy to generalize it tothree-dimensional problems with omplex geometry.2. The ShemeLet Ix = fx = 0 < x < 1g; Iy = fy = � 1 < y < 1g and 
 = Ix � Iy withthe boundary �
. The speed vetor and the pressure are denoted by U(x; y; t) andP (x; y; t) respetively. � > 0 is the kineti visosity. U0(x; y); P0(x; y) and f(x; y; t)are given funtions. Let T > 0; �t = ��t ; �x = ��x ; and �y = ��y : The Navier-Stokesequation is as follows8>>><>>>: �tU + (U � r)U +rP � �r2U = f; in 
� (0; T ℄;r � U = 0; in 
� (0; T ℄;U(x; y; 0) = U0(x; y); P (x; y; 0) = P0(x; y); in 
 (2:1)� Reeived November 8, 1995.



496 S.N. HE AND C.P. YANGSuppose that the boundary is a non-slip wall and so U = 0 on �
: In addition, Psatis�es the following normalizing ondition:Z
 P (x; y; t) dxdy = 0; 8t 2 [0; T ℄:Let D be an interval (or a domain) in R1(or R2). We denote by (�; �)D and k �kD theusual inner produt and norm of L2(D): For simpliity, (�; �)
 and k � k
 are replaedby (�; �) and k � k respetively. Hr(D) and Hr0(D) denote the usual Hilbert spaes withthe usual inner produts and norms. We also de�neL20(D) = f� 2 L2(D) = ZD � dD = 0 g:To takle the inompressible onstraint (i.e., the seond equation of (2.1)), we adoptthe idea of arti�ial ompression, that is, to approximate the inompressible onditionby the equation � �P�t +r � U = 0where � > 0 is a small parameter.In order to approximate the nonlinear term, we introdue a trilinear form J(�; �; �) :[(H1(
))2℄3 ! R1 as follows:J(�; '; �) = 12 [((' � r)�; �)� ((' � r)�; �)℄:Clearly, we have J(�; '; �) + J(�; '; �) = 0; (2:2)and if r � ' = 0; then J(�; '; �) = ((' � r)�; �):Now we onstrut the sheme. For any integer k � 0, we denote by Pk the set of allpolynomials of degree � k, de�ned on R1. Suppose N is a positive integer, we de�neVN (Iy) = fv(y) 2 PN = v(�1) = v(1) = 0g:Next, we divide Ix into Mh subintervals with the nodes 0 = x0 < x1 < � � � < xMh = 1:Let Il = (xl�1; xl); hl = xl�xl�1; h = max1�l�Mh hl and h0 = min1�l�Mh hl: Assume that thereexists a positive onstant d independent of the divisions of Ix, suh that h=h0 � d: Let~Skh(Ix) = fv(x) = v(x) jIl2 Pk; 1 � l �Mhg; Skh(Ix) = ~Skh(Ix)\H10 (Ix):The trial funtion spaes for the speed and the the pressure are de�ned respetively asfollows Xkh;N (
) = fSk+1h (Ix)
 VN (Iy)g � fSk+2h (Ix)
 VN (Iy)g;Y kh;N (
) = f ~Skh(Ix)
PN�2(Iy)g\L20(
):


