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A NONLINEAR GALERKIN METHOD WITH VARIABLEMODES FOR KURAMOTO-SIVASHINSKY EQUATION�1)Yu-jiang Wu(Department of Mathematis, Shanghai University, Jiading, Shanghai 201800, China;Department of Mathematis, Lanzhou University, Lanzhou 730000, China)AbstratThis artile proposes a kind of nonlinear Galerkin methods with variable modesfor the long-term integration of Kuramoto-Sivashinsky equation. It onsists of�nding an appropriate or best number of modes in the orretion of the method.Convergene results and error estimates are derived for this method. Numerialexamples show also the eÆieny and advantage of our method over the usualnonlinear Galerkin method and the lassial Galerkin method.Key words: Kuramoto-Sivaskinsky equation, Nonlinear Galerkin method, Approx-imation, Convergene 1. IntrodutionThe nonlinear Galerkin method was introdued by Marion and Temam[4℄, whihis stemmed from the theory of inertial manifolds and dynamial system theory. Theonsiderable inrease in the omputing power during last years makes it possible forthe mathematiians to solve numerial problems for approximating various dissipativeevolution equations on large interval of time. Indeed, the nonlinear Galerkin methodhas proven to be a powerful tool for suh problems (See [9℄, [11℄ and referenes therein).Reently, this method has been applied to the long time integration of Kuramoto-Sivashinsky equation[12℄. Thanks to a newly established inequality for the nonlinearterm of Kuramoto-Sivashinsky equation, we an extend the method to a nonlinearGalerkin method with variable modes. Here the method involves a hangeable numberfor the small-sale omponents zs = zs(m), when the unknown funtion is u � um + zs.After the analysis of error estimates we give an optimal value of s or ! = m+ s whihredues the order of the error of the method to the lowest.This paper is organized as follows: Setion 2 ontains the desription of the equationand some preliminary results. In Setion 3 we desribe the modi�ation of nonlinearGalerkin method with variable modes and prove suessively the onvergene of themethod. In Setion 4 we state and prove the error estimates of the method and givethe possible minimummodes for the method. Finally, in Setion 5 we make omparisonsof various numerial omputations for two examples whih show a signi�ant gain inomputing time for our method.� Reeived Otober 5, 1995.1)The projet is supported partially by the Siene Foundation of the State Eduation Commissionof China.



244 Y.J. WU2. The Equation and Its Funtional SettingThe Kuramoto-Sivashinsky equation with an initial ondition and a periodi bound-ary ondition reads as follows (with dimension= 1 and period= l):8>>><>>>: �u�t + �4u�x4 + �2u�x2 + u�u�x = 0 0 < x < l; t > 0u(x; 0) = u0(x) 0 � x � lu(x; t) = u(x+ l; t) t � 0 (2.1)(2.2)(2.3)For the funtional setting of the equation, we an rewrite this partial di�erentialequation into an abstrat evolution equation in a Hilbert spae H with salar produt(�; �) and norm j � j. In this ase, we have H = fuju 2 L2(0; l), u(0; t) = u(l; t) = 0g.Thus the equations (2.1){(2.3) beome8<: dudt +Au+B(u) + Cu = fu(0) = u0 (2.4)(2.5)Here, we set A = �4�x4 , B(u) = u�u�x andCu = 8>><>>: �2u�x2 l < 2��2u�x2 + ��u�x + �0u l � 2�f = ( 0 l < 2���(4) � �00 � ��0 l � 2�where � = �(x) is a funtion given in [5℄ to keep the oerivity property of the operatorA+ C.Sine A�1 is ompat and self-adjoint, there exists an orthonormal basis of H whihonsists of the eigenvetors of A: Awj = �jwj , 0 < �1 � �2 � � � �, �j !1 as j !1.Given another Hilbert spae V endowed with salar produt ((�; �)) and norm k � k,V = H2p (0; l) \H. We denote the domain of the operator A by D(A) = H4p(0; l) \H.And we know that B(u) = B(u; u) is a bilinear operator from V � V into V 0, C is alinear operator from V into H and f 2 H.De�ne a trilinear form b on V by b(u; v; w) = hB(u; v); wiV 0;V 8u; v; w 2 V , wereall the following well-known properties:b(u; u; u) = 0 8u 2 V (2.6)jb(u; v; w)j � 1juj1=2kuk1=2kvkjwj1=2kwk1=2 8u; v; w 2 V (2.7)jCuj � 2kuk 8u 2 V (2.8)jB(u; v)j � 3juj1=2kuk1=2kvk1=2jAvj1=2 8u 2 V; v 2 D(A) (2.9)jB(u; v)j � 4juj1=2jAuj1=2kvk 8u; v 2 D(A) (2.10)jB(u; v)j � 5�1 + log jAuj2�1kuk2�1=2kukkvk 8u 2 D(A); v 2 V (2.11)


