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Abstract

In this paper, we consider the computation of bounded solutions of a semilinear
elliptic equation on an infinite strip. The dynamical system approach and reduction
on center manifold are used to overcome the difficulties in numerical procedure.
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1. Introduction
Consider elliptic problem on an infinite strip of R?
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where (z,y) € (—00,00) x (0,1) and f, g are smooth functions of thier arguments, A, e
two real parameters. We are interested in the bounded solutions of (1.1) with the
following conditions

u(z,0) =u(z,1) =0, z€R (1.2)
and
lim wu(z,y) =0, ye(0,1). (1.3)

Some problems arising in applied mathematics are given by the formulation (1.1) with
conditions (1.2) and (1.3), for example, the description of the steady flow of an inviscid
nondiffusive fluid through a channel of varying depth(see A. Meilke[ 7 |). Here we
concern the numerical computation of the bounded solutions of (1.1) with (1.2) and
(1.3), i.e., that solution satisfying

sup |u(z,y)| < +oo. (1.4)
T,y
To do this, we shall meet some difficulties from two aspects, unboundedness of domain
and nonlinearity of function f. In order to overcome the difficulty from unboundedness
of domain, the boundary conditions at an artificial boundary are often used and then
the boundary-value problems on the finite domain are solved (see T.Hagstrom and
H.B.Keller [2] and its references). However, the multi-solution of our problem which

* Received January 11, 1995.



160 F.M. MA

is from the nonliearity makes it difficult to compute numerically even though artificial
boundary conditions are used.

We propose here another approach to compute the solutions of problem (1.1). The
first step of our approach is to transform (1.1) with boundary condition (1.2) into infi-
nite dimensional formally dynamical system which is follows the idea of K.Kirschgéissner[?’],
A Mielkel” and Mal®. Then, the bounded solutions of (1.1) will be found as the spe-
cial orbits—homoclinic or heteroclinic or half-periodic orbits of the formally dynamical
system. The second step of our approach is to study numerically the planar dynamical
system reduced from infinite dimentional system by use of center manifold theory. The
porpuse of this step is to provid good prediction of special orbits of system obtained
by the first step. Finally, we calculate numerically the special solutions of the formally
dynamical system. To this end, of course, it is neccessary to approximate the infi-
nite dimensional system by a finite dimensional one and to give a artificial boundary
condition. We use the semi-discrezation on y and the projection boundary conditions.
Meanwhile, we also use a predict-correct procedure with an initial prediction which is
constructed by use of the results in step two.

The outline of this paper is as follows: in Sec. 2, we describe the procedures to
transform (1.1) and (1.2) into the infinite dimensional system and to reduce it into a
planar dynamical system by use of the center manifold theory. In Sec. 3, we give a
numerical study of reduced system. In Sec.4, the predict-correct procedure to solve
problem (1.1)—(1.4) is described. In last section, a numerical implementation of our
approach is given by a example.

2. Formally Dynamical System Formulation of Problem

Following Kirschgissner® and Mielkel”), we now transform our problem (1.1)-(1.2)
into an infinite dimensional system. Assume that f(A,y,0) = 0 and define the linear
operator L()\) in L?(0,1) as

_ 0% of
L()‘)q5 = 8—y2 - %(Aaya0)¢a

Vg € D(L(N) = Ho (0, 1) [V H*(0,1).
Then (1.1) with (1.2) can be understood as a nonlinear differential equation

d?u

5 LNu+ f(\u) +g(\ e x) =0, (2.1)

where u : (—o0o0,00) — L%(0,1), f : A x L2(0,1) — L?(0,1), g : A x (—€g,€0) X
(—00,00) — L?(0,1) are defined by



