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Abstract

For the sparse linear equations Kz = b, where K arising from optimization and

discretization of some PDEs is symmetric and indefinite, it is shown that the LT
factorization can be used to provide an “exact” preconditioner for SYMMLQ and
UZAWA algorithms. “Inexact” preconditioner derived from approximate factor-
ization is used in the numerical experiments.
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1. Introduction

Symmetric indefinite systems of linear equations arise in many areas of scientific
computation. In this paper, we will discuss the solution of sparse indefinite system of

(3 ") ()= (3) 2

where A € R™*"™ is a symmetric positive definite matrix, B € R™*" has full row rank

m < n, C € R™*™ is symmetric positive semidefinte, f € R"™ and ¢ € R™. In this
[8—10]

the form

case, the linear equations has the unique solution . For simplicity, we denote the
equations as Kz = b.

Discretizations of the Stokes equations or other PDEs produce the linear equations
as (1). In optimization, when barrier or interior-point methods are applied to some
linear or nonlinear programs, the Karush-Kuhn-Tucker optimality conditions also lead
to a set of equations as (1). The system often need not to be solved exactly, therefore
it is appropriate to consider iterative methods and preconditioners for the indefinite
matrix K.

Our main aim is to present a simple result that shows how to use the LT fac-
torization of K8 to construct a preconditioner for iterative methods. The iterative
methods to be discussed are the Paige-Saunders algorithm named as SYMMLQ!" and
the UZAWA method!!.

The rest of the paper is organized as follows. In section 2, we derive the exact
preconditioner from the LT factorization and take inexact preconditioner from ap-
proximate factorization into account. In section 3, two iterative methods, SYMMLQ
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and UZAWA algorithms with preconditioners, are presented. In section 4, we present
the numerical results and show the effectiveness of the preconditioners.

2. Preconditioning Indefinite System Using LT" Factorization

The indefinite system Kz = b arising from optimization and PDEs is often ill-
conditioned. It is appropriate to take a positive definite matrix M = CC” as pre-
conditioner for K so that C~'KC~T has lower condition number or better eigenvalue
distribution.

The following theorem presents the LT" factorization of K. For more detail, see
8].

Theorem 2.1. Given any symmetric indefinite matriz

A BT
k=(3 %) 2)
where A, B and C are the same as that defined in (1). Then we have

K=1LT", (3)
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where l11 € R™*™ and lyg € R™*"™ are lower triangular matrices, la; € R™*"™,
The matrices l11,l91 and l99 can be easily calculated from the following matrix
equations:

A=1yl], (5)
B =Inlf), (6)
C + Ioy 1T, = 1991%,,. (7)

If we take LL" as the preconditioner of K, it is easily verified that

Iy )
=J, 8
Iy (8)

where I1; € R™*™ and Iyy € R™*™ are identity matrices. This means the “perfect”

K=L'KLT= (

preconditioner for K is the matrix
M =LL", (9)

since the preconditioned matrix K has at most two distinct eigenvalues and the Paige-
Saunders algorithm converges in at most two iterations/2. The matrix LL? is named
as the exact preconditioner for K.

In practice, we will use “inexact” preconditioner, which is derived from the LT"
factorization of an approximation to K. For the inexact preconditioner, we have the
following results. Let Apax(K) denote the maximum eigenvalue of K, A\pin(K) the min-
imum eigenvalue. A1 (K), Ag(K) is the maximum and minimum of |A\(K)| respectively.
The generalized condition number of K is defined by x(K) = [\ (K)/A2(K)].



