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ITERATIVE METHODS WITH PRECONDITIONERS FORINDEFINITE SYSTEMS�1)Wei-qing Ren Jin-xi Zhao(Department of Mathemati
s, Nanjing University, Nanjing 210008, China)Abstra
tFor the sparse linear equations Kx = b, where K arising from optimization anddis
retization of some PDEs is symmetri
 and inde�nite, it is shown that the LLTfa
torization 
an be used to provide an \exa
t" pre
onditioner for SYMMLQ andUZAWA algorithms. \Inexa
t" pre
onditioner derived from approximate fa
tor-ization is used in the numeri
al experiments.Key words: Generalized 
ondition number, Inde�nite systems, Fa
torizationmethod1. Introdu
tionSymmetri
 inde�nite systems of linear equations arise in many areas of s
ienti�

omputation. In this paper, we will dis
uss the solution of sparse inde�nite system ofthe form �A BTB �C �� up� = � fg � ; (1)where A 2 Rn�n is a symmetri
 positive de�nite matrix, B 2 Rm�n has full row rankm � n, C 2 Rm�m is symmetri
 positive semide�nte, f 2 Rn and g 2 Rm. In this
ase, the linear equations has the unique solution[8�10℄. For simpli
ity, we denote theequations as Kx = b.Dis
retizations of the Stokes equations or other PDEs produ
e the linear equationsas (1). In optimization, when barrier or interior-point methods are applied to somelinear or nonlinear programs, the Karush-Kuhn-Tu
ker optimality 
onditions also leadto a set of equations as (1). The system often need not to be solved exa
tly, thereforeit is appropriate to 
onsider iterative methods and pre
onditioners for the inde�nitematrix K.Our main aim is to present a simple result that shows how to use the LLT fa
-torization of K [8℄ to 
onstru
t a pre
onditioner for iterative methods. The iterativemethods to be dis
ussed are the Paige-Saunders algorithm named as SYMMLQ[7℄ andthe UZAWA method[1℄.The rest of the paper is organized as follows. In se
tion 2, we derive the exa
tpre
onditioner from the LLT fa
torization and take inexa
t pre
onditioner from ap-proximate fa
torization into a

ount. In se
tion 3, two iterative methods, SYMMLQ� Re
eived August 13, 19961)Proje
t supported by the 863-plan of national High Te
hnology of China
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onditioners, are presented. In se
tion 4, we presentthe numeri
al results and show the e�e
tiveness of the pre
onditioners.2. Pre
onditioning Inde�nite System Using LLT Fa
torizationThe inde�nite system Kx = b arising from optimization and PDEs is often ill-
onditioned. It is appropriate to take a positive de�nite matrix M = CCT as pre-
onditioner for K so that C�1KC�T has lower 
ondition number or better eigenvaluedistribution.The following theorem presents the LLT fa
torization of K. For more detail, see[8℄.Theorem 2.1. Given any symmetri
 inde�nite matrixK = �A BTB �C � ; (2)where A, B and C are the same as that de�ned in (1). Then we haveK = LLT ; (3)L = � l11l21 l22 � ; LT = � lT11 lT21�lT22 � ; (4)where l11 2 Rn�n and l22 2 Rm�m are lower triangular matri
es, l21 2 Rm�n.The matri
es l11; l21 and l22 
an be easily 
al
ulated from the following matrixequations: A = l11lT11; (5)B = l21lT11; (6)C + l21lT21 = l22lT22: (7)If we take LLT as the pre
onditioner of K, it is easily veri�ed thatK = L�1KL�T = � I11 �I22 � � J; (8)where I11 2 Rn�n and I22 2 Rm�m are identity matri
es. This means the \perfe
t"pre
onditioner for K is the matrix M = LLT ; (9)sin
e the pre
onditioned matrix K has at most two distin
t eigenvalues and the Paige-Saunders algorithm 
onverges in at most two iterations[2℄. The matrix LLT is namedas the exa
t pre
onditioner for K.In pra
ti
e, we will use \inexa
t" pre
onditioner, whi
h is derived from the LLTfa
torization of an approximation to K. For the inexa
t pre
onditioner, we have thefollowing results. Let �max(K) denote the maximum eigenvalue of K, �min(K) the min-imum eigenvalue. �1(K), �2(K) is the maximum and minimum of j�(K)j respe
tively.The generalized 
ondition number of K is de�ned by �(K) = j�1(K)=�2(K)j.


