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CONVERGENCE OF CHORIN-MARSDEN FORMULA FOR THENAVIER-STOKES EQUATIONS ON CONVEX DOMAINS�Lung-an Ying(Resear
h Institute for Mathemati
al S
ien
es, Kyoto University, Japan;Department of Mathemati
s, Peking University, Beijing 100871, China)Abstra
tWe prove the 
onvergen
e of the Chorin-Marsden produ
t formula for solv-ing the initial-boundary value problems of the Navier-Stokes equations on 
onvexdomains. As a parti
ular 
ase we 
onsider the 
ase of the half plane.Key words: Navier Stokes equation, Vortex method, Fra
tional step method, Con-vergen
e 1. Introdu
tionDi�erent kinds of fra
tional step methods have been applied to solve the initial-boundary value problems of the Navier-Stokes equations for vis
ous in
ompressible
ow. The vortex method developed in [5℄ by Chorin is a s
heme with three intermediatesteps where the e�e
ts of 
onve
tion and vis
osity are separated, and vortex sheets are
reated along the boundary. A set of vortex blobs is introdu
ed to approximate thevorti
ity �eld. These vortex blobs move along the parti
le traje
tories in the 
onve
tionstep, and they move randomly in the di�usion step. The 
onvergen
e of the s
heme isan interesting problem whi
h has 
alled the attention of many authors.Related to this s
heme, the splitting of the initial-boundary value problems of theNavier-Stokes equations to the 
orresponding problems of the Euler equations and theStokes equations has been extensively studied, see [2℄ [3℄ [7℄ [9℄ [10℄ [11℄ [12℄ [13℄ [14℄and the referen
es therein. By the results a simple splitting 
onverges in Lp; p < 1,and in Hs; s < 52 , and if the vortex sheets are smeared out su
h that the vorti
ity issmooth, then the s
heme with some modi�
ation still 
onverges.Marsden gave one mathemati
al formulation of Chorin's s
heme whi
h is a produ
tof three operators, uk(ik) = (Hk Æ � ÆEk)iu0;where u0 is the initial data, Ek is the lo
al 
ow de�ned by the Euler equations withtemporal step k, � is the \vorti
ity 
reation operator", and Hk is the solver of theheat equation with step k. This formula is known as the Chorin-Marsden formula[6℄.It involves a further approximation beyond the splitting. In [6℄ the velo
ity �eld isextended oddly to the exterior of the domain and the Cau
hy problem of the heat� Re
eived July 10, 1996.
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ity is solved in the di�usion step rather than the initial-boundaryvalue problem of the Stokes equation . This approximation is 
onsistent to the randomwalk pro
edure. Convergen
e of the linear problems was proved in [6℄. Benfatto andPulvirenti studied the Chorin-Marsden formula in the 
ase of the half plane for theNavier-Stokes equations and proved the 
onvergen
e[4℄. The s
heme in [4℄ is di�erentfrom that in [6℄ by two respe
ts: The tangential 
omponent of the velo
ity is alsoextended oddly but the normal 
omponent is extended evenly, and an expli
it Eulers
heme is applied in the 
onve
tion step rather than using the parti
le method. The�rst modi�
ation bears the advantage that the velo
ity �eld keeps in
ompressible afterthe extension.The purpose of this paper is to prove the 
onvergen
e of the Chorin-Marsden for-mula for arbitrary two dimensional 
onvex domains. In the 
onve
tion step we usethe velo
ity of the previous step to slove the parti
le traje
tories, making the step infa
t linear. In the di�usion step we use a modi�ed approa
h to extend the velo
ity.Parti
ularly if the domain is the half plane then the extension here is the same as thatin [6℄.In se
tion 2 we state the s
heme in details and introdu
e some notations. In se
tion3 we prove the 
onvergen
e of the s
heme for 
onvex domains, where for simpli
ity weassume that the domains are bounded. In se
tion 4 we apply our approa
h to the 
ase ofthe half plane, and we will show that both approa
hes of extension, by Chorin-Marsdenand by Benfatto and Pulvirenti, yield the results of 
onvergen
e.2. S
hemeLet 
 � R2 be a domain with suÆ
iently smooth boundary �
 and x = (x1; x2) bethe points in R2. We 
onsider the following initial-boundary value problems,�u�t + (u � r)u+ 1�rp = � 4 u+ f; (1)r � u = 0; (2)uj�
 = 0; (3)ujt=0 = u0; (4)where u = (u1; u2) is the velo
ity, p is the pressure, f is the external for
e, � is the
onstant density, � is the 
onstant kinemati
 vis
osity, and r = ( ��x1 ; ��x2 ). We intro-du
e the vorti
ity ! = �r^ u and the stream fun
tion  su
h that u = r^  , wherer^ = ( ��x2 ;� ��x1 ), then the vorti
ity-stream fun
tion formulation of the problems is�!�t + u � r! = � 4 ! + F; (5)�4 = !;  j�
 = 0; � �n �����
 = 0; (6)u = r^  ; (7)!jt=0 = !0; (8)


