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Abstract

We prove the convergence of the Chorin-Marsden product formula for solv-
ing the initial-boundary value problems of the Navier-Stokes equations on convex
domains. As a particular case we consider the case of the half plane.
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1. Introduction

Different kinds of fractional step methods have been applied to solve the initial-
boundary value problems of the Navier-Stokes equations for viscous incompressible
flow. The vortex method developed in [5] by Chorin is a scheme with three intermediate
steps where the effects of convection and viscosity are separated, and vortex sheets are
created along the boundary. A set of vortex blobs is introduced to approximate the
vorticity field. These vortex blobs move along the particle trajectories in the convection
step, and they move randomly in the diffusion step. The convergence of the scheme is
an interesting problem which has called the attention of many authors.

Related to this scheme, the splitting of the initial-boundary value problems of the
Navier-Stokes equations to the corresponding problems of the Euler equations and the
Stokes equations has been extensively studied, see [2] [3] [7] [9] [10] [11] [12] [13] [14]
and the references therein. By the results a simple splitting converges in L”,p < oo,
and in H% s < g, and if the vortex sheets are smeared out such that the vorticity is
smooth, then the scheme with some modification still converges.

Marsden gave one mathematical formulation of Chorin’s scheme which is a product
of three operators,

uy(ik) = (Hy o ¢ o Eg)"uo,

where wug is the initial data, Fj is the local flow defined by the Euler equations with
temporal step k, ¢ is the “vorticity creation operator”, and Hy is the solver of the
heat equation with step k. This formula is known as the Chorin-Marsden formulalf.
It involves a further approximation beyond the splitting. In [6] the velocity field is
extended oddly to the exterior of the domain and the Cauchy problem of the heat
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equation for the velocity is solved in the diffusion step rather than the initial-boundary
value problem of the Stokes equation . This approximation is consistent to the random
walk procedure. Convergence of the linear problems was proved in [6]. Benfatto and
Pulvirenti studied the Chorin-Marsden formula in the case of the half plane for the
Navier-Stokes equations and proved the convergencel?). The scheme in [4] is different
from that in [6] by two respects: The tangential component of the velocity is also
extended oddly but the normal component is extended evenly, and an explicit Euler
scheme is applied in the convection step rather than using the particle method. The
first modification bears the advantage that the velocity field keeps incompressible after
the extension.

The purpose of this paper is to prove the convergence of the Chorin-Marsden for-
mula for arbitrary two dimensional convex domains. In the convection step we use
the velocity of the previous step to slove the particle trajectories, making the step in
fact linear. In the diffusion step we use a modified approach to extend the velocity.
Particularly if the domain is the half plane then the extension here is the same as that
in [6].

In section 2 we state the scheme in details and introduce some notations. In section
3 we prove the convergence of the scheme for convex domains, where for simplicity we
assume that the domains are bounded. In section 4 we apply our approach to the case of
the half plane, and we will show that both approaches of extension, by Chorin-Marsden
and by Benfatto and Pulvirenti, yield the results of convergence.

2. Scheme

Let Q C R? be a domain with sufficiently smooth boundary 9 and = = (1, z3) be
the points in R%. We consider the following initial-boundary value problems,

1
%—i—(u-V)u—l—;szuAu—i—f,

(1)
V.-u=0, (2)
(3)
(4)

3
4

ulpn =0,

u‘t:[] = uog,
where u = (uq,u9) is the velocity, p is the pressure, f is the external force, p is the

constant density, v is the constant kinematic viscosity, and V = (3%1, 3%2). We intro-
duce the vorticity w = —V A u and the stream function ¢ such that u =V A4, where

VA = (8%2, —8%1), then the vorticity-stream function formulation of the problems is
0
8—j+u-Vw:VAw+F, (5)
0
7Aw:wa Waﬂ =0, a_w =0, (6)
o0
u=VAy, (7)

w|t:0 = Wo, (8)



