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Abstract

Nonlinear Jacobi iteration and nonlinear Gauss-Seidel iteration are proposed to
solve the famous Numerov finite difference scheme for nonlinear two-points bound-
ary value problem. The concept of supersolutions and subsolutions for nonlinear
algebraic systems are introduced. By taking such solutions as initial values, the
above two iterations provide monotone sequences, which tend to the solutions of
Numerov scheme at geometric convergence rates. The global existence and unique-
ness of solution of Numerov scheme are discussed also. The numerical results show
the advantages of these two iterations.
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1. Introduction

In studying some problems arising in electromagnetism, biology, astronomy, bound-
ary layer and other topics, we often meet nonlinear two-points boundary problem, i.e.,
finding y ∈ C0[0, 1] ∩ C2(0, 1) such that

{ −y′′ − f(x, y(x)) = 0, 0 < x < 1,

y(0) = α, y(1) = β
(1.1)

where α, β are certain constants, and f(x, z) ∈ C0(0, 1) × C1(−∞,∞). Under some
conditions on f(x, z), we can use the framework of [1] to investigate the existence and
uniqueness of its solutions. Also there are a lot of literature concerning its numerical
solutions[2−4]. In particular, Numerov[5] proposed a famous finite difference scheme with
the accuracy of fourth order, which has been used widely in many practical problems.

Let N be any positive integer and h =
1
N

, xn = nh, 0 ≤ n ≤ N . Also, let yn = y(xn),

fn = f(xn, yn), and

Y = (y1, · · · , yN−1)T , F (Y ) = (f1, · · · , fN−1)T ,

C = (α, 0, · · · , 0, β)T , D =
( 1
12

f(0, α), 0, · · · , 0,
1
12

f(1, β)
)T

.
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Moreover we introduce the symmetric tridiagonal matrices J = (Ji,j) and B = (Bi,j)
with the following elements Ji,i = 2, Ji,i−1 = Ji,i+1 = −1, 1 ≤ i ≤ N − 1, Bi,i = 5/6,
Bi,i−1 = Bi,i+1 = 1/12, 1 ≤ i ≤ N − 1. Then the Numerov scheme can be described as
follows[5]

Lh(Y ) ≡ JY − h2(BF (Y ) + D)− C = 0. (1.2)

If f(x, y) is nonlinear in y, then we need some iterations to solve (1.2). Henrici[6]

and Less[7] considered the Newton iteration. Chawla[8] improved the results of [6,7].
He proposed a suitable initial approximation of the Newton procedure and obtained

the sufficient conditions for the convergence when −∞ <
∂f

∂z
(x, z) < π2. But such

conditions involve an implicit equation for the mesh size h and it is difficult to solve it
usually. In addition, we have to adopt an interior iteration for solving a linear system
for each step of the exterior iteration, which costs a lot of computational time. The
purpose of this paper is to develop two new iterations. In next section, we introduce
nonlinear Jacobi iteration and nonlinear Gauss-Seidel iteration. Both of them avoid
the interior iterations in [8], and so save a lot of work. Also, we introduce the concept
of supersolutions and subsolutions, and prove that if we take such solutions as initial
values, then the above iterations may provide two monotone sequences. They not only
give us the up-bound and low-bound of the exact solution of (1.2), but also tend to
it with geometric convergence rates. In Section 3, we consider global existence and
uniqueness of solution of (1.2) as well as the global convergences of the new iterations.
In the final section, we present the numerical results which agree the theoretical analysis
and show the advantages of the two new approaches.

2. New Nonlinear Iterations

We now present nonlinear Jacobi iteration and nonlinear Gauss-Seidel iteration for
(1.2). Let ω be a parameter. We decompose the matrices J and B as J = D − L− U ,
B = D∗ + L∗ + U∗, where D and D∗ are diagonal matrices, L and L∗ are lower-off
diagonal matrices, U and U∗ are upper-off diagonal matrices. Let Y (m) be the m′th
iterated vector (y(m)

1 , · · · , y(m)
N−1)

T and y
(m)
i = y(m)(xi). Then the nonlinear Jacobi

iteration is defined as

(D−ωh2D∗)Y (m) = (L+U)Y (m−1)−ωh2D∗Y (m−1) +h2BF (Y (m−1))+h2D+C, (2.1)

while the Gauss-Seidel iteration is given by

(D−L−ωh2(D∗+L∗))Y (m) = UY (m−1)−ωh2(D∗+L∗)Y (m−1)+h2BF (Y (m−1))+h2D+C.

(2.2)
Clearly both (2.1) and (2.2) do not need the interior iterations to solve Y (m) as long
as Y (m−1) is known.

For theoretical analysis, we first introduce some notations and analyze the mono-
tonicity of the matrix J − ωh2B. Let U = (u1, · · · , uN−1)T and V = (v1, · · · , vN−1)T .
If ui ≤ vi for all i, then we say that U ≤ V . If U ≤ W ≤ V , then it is denoted by
W ∈ K(U, V ). If all elements of a vector U or a matrix A = (Ai,j) are non-negative,
then we say that U ≥ 0 or A ≥ 0, etc.. Furthermore if AU ≥ 0 implies U ≥ 0 for any


