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Abstract

The purpose of this paper is to propose and study a class of quasi-interpolating
operators in multivariate spline space S1

2(∆2∗
mn) on non-uniform type-2 triangula-

tion. Based on the operators, we construct cubature formula for two-dimensional
hypersingular integrals. Some computing work have been done and the results are
quite satisfactory.
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1. Introduction

Since P. Zwart obtained an expression of bivariate B-spline[2], R.-H Wang and C.K.
Chui have developed a series of results, especially, the quasi-interpolating operators
of S1

2(∆2
mn) on uniform type-2 triangulation and its approximation properties[1] which

have widespread applications in Mechanics and Engineering. Furthermore, R-H Wang
and C.K. Chui also obtained the function with minimum support in S1

2(∆2∗
mn) on non-

uniform type-2 triangulation and the basis of S1
2(∆2∗

mn)[4]. In this paper we introduce
some quasi-interpolating operators of S1

2(∆2∗
mn) on non-uniform type-2 triangulation

and show their approximation properties. By using the operators we construct cuba-
ture formulas.which can be used to evaluate hypersingular integrals arisen from many
mechanics and engineering problems.

2. Quasi-Interpolating Operators of S(∆2∗
mn)

Let ∆2∗
mn be a non-uniform type-2 triangulation on the domain Ω[a, b]⊗ [c, d], and

x−2 < x−1 < a = x0 < · · · < xm = b < xm+1 < xm+2,

y−2 < y−1 < c = y0 < · · · < yn = d < yn+1 < yn+2.

First we consider the linear operators

Vmn : C(Ω) → S1
2(∆2∗

mn); (2.1)
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Vmn(f) =
∑

ij

f
(xi + xi+1

2
,

yj + yj+1

2

)
Bij(x, y); (2.2)

It is similar to the result in [1], we have the following results.
Theorem 2.1. For f ∈ P1 and f = xy, we have

Vmn(f) = f. (2.3)

Because of the theorem 2.7[4], we only need to verify the theorem for and f(x, y) =
x, y and xy. Since Vmn(f) is a linear operator, we can only examine them in the domain
Dij :

Dij = (xi, xi+1)⊗ (yj , yj+1); (i = 0, · · ·m + 1; j = 0, · · ·n + 1).

By the computation of the values of Vmn(f) at eight points

(xi, yj), (xi, yj+1),
(xi + xi+1

2
, yj

)
,
(xi + xi+1

2
, yj+1

)
,

(xi+1, yj), (xi+1, yj+1),
(
xi,

yj + yj+1

2

)
,
(
xi+1,

yj + yj+1

2

)
; (2.4)

we have Vmn(f), at all of the eight points. Since the eight point are the adapt in-
terpolating knot group in Dij , we have Vmn(f) = f in Dij . Therefore, the theorem
holds.

It is easy to prove that Vmn(f) 6= f , as f = x2 or y2, In order to make the theorem
holds for all polynomials in P2, we have to introduce another linear operator

Wmn : C(Ω) → S1
2(∆2∗

mn), (2.5)

Wmn(f) =
∑

ij

λij(f)Bij(x, y), (2.6)

where

λij(f) =2f
(xi + xi+1

2
,
yj + yj+1

2

)

− 1
4
(f(xi, yj) + f(xi, yj+1) + f(xi+1, yj) + f(xi+1, yj+1)). (2.7)

It is similar to result in [4], we have the following theorem:
Theorem 2.2. Wmn(f) = f for any f ∈ P2.
By the theorem 2.1, we have Wmn(f) = f for f ∈ P1 and f = xy. Now we need to

verify Wmn(f) = f for f(x, y) = x2 and y2. Just the same as the proof of theorem 2.1,
we only need to compute the values of Wmn(f) in Dij at the points

(xi, yj), (xi, yj+1),
(xi + xi+1

2
, yj

)
,
(xi + xi+1

2
, yj+1

)

(xi+1, yj), (xi+1, yj+1),
(
xi,

yj + yj+1

2

)
,
(
xi+1,

yj + yj+1

2

)
. (2.8)

By means of computation of the value of Wmn(f), we have Wmn(f) = f in Dij for
f(x, y) = x2 and y2. Therefore the theorem 2.2 holds.


