Journal of Computational Mathematics, Vol.16, No.4, 1998, 337–344.

QUASI-INTERPOLATING OPERATORS AND THEIR APPLICATIONS IN HYPERSINGULAR INTEGRALS^{*1)}

Ren-hong Wang and You Lu (Institute of Mathematical Science Dalian University of Technology Dalian, P.R. China 116024)

Abstract

The purpose of this paper is to propose and study a class of quasi-interpolating operators in multivariate spline space $S_2^1(\Delta_{mn}^{2*})$ on non-uniform type-2 triangulation. Based on the operators, we construct cubature formula for two-dimensional hypersingular integrals. Some computing work have been done and the results are quite satisfactory.

Key words: Hypersingular integral, finite-part integral, quasi-interpolating operator, non-uniform type-2 triangulation.

1. Introduction

Since P. Zwart obtained an expression of bivariate B-spline^[2], R.-H Wang and C.K. Chui have developed a series of results, especially, the quasi-interpolating operators of $S_2^1(\Delta_{mn}^2)$ on uniform type-2 triangulation and its approximation properties^[1] which have widespread applications in Mechanics and Engineering. Furthermore, R-H Wang and C.K. Chui also obtained the function with minimum support in $S_2^1(\Delta_{mn}^{2*})$ on nonuniform type-2 triangulation and the basis of $S_2^1(\Delta_{mn}^{2*})^{[4]}$. In this paper we introduce some quasi-interpolating operators of $S_2^1(\Delta_{mn}^{2*})$ on non-uniform type-2 triangulation and show their approximation properties. By using the operators we construct cubature formulas.which can be used to evaluate hypersingular integrals arisen from many mechanics and engineering problems.

2. Quasi-Interpolating Operators of $S(\Delta_{mn}^{2*})$

Let Δ_{mn}^{2*} be a non-uniform type-2 triangulation on the domain $\Omega[a, b] \otimes [c, d]$, and

$$x_{-2} < x_{-1} < a = x_0 < \dots < x_m = b < x_{m+1} < x_{m+2},$$

$$y_{-2} < y_{-1} < c = y_0 < \dots < y_n = d < y_{n+1} < y_{n+2}.$$

First we consider the linear operators

$$V_{mn}: C(\Omega) \to S_2^1(\Delta_{mn}^{2*}); \tag{2.1}$$

^{*} Received December 26, 1995.

¹⁾Project supported by the National Natural Science Foundation of China, and the Foundation for Doctoral program of the State Education Commission of China.

R.H. WANG AND Y. LU

$$V_{mn}(f) = \sum_{ij} f\left(\frac{x_i + x_{i+1}}{2}, \frac{y_j + y_{j+1}}{2}\right) B_{ij}(x, y);$$
(2.2)

It is similar to the result in [1], we have the following results.

Theorem 2.1. For $f \in P_1$ and f = xy, we have

$$V_{mn}(f) = f. (2.3)$$

Because of the theorem 2.7^[4], we only need to verify the theorem for and f(x, y) = x, y and xy. Since $V_{mn}(f)$ is a linear operator, we can only examine them in the domain D_{ij} :

$$D_{ij} = (x_i, x_{i+1}) \otimes (y_j, y_{j+1}); \quad (i = 0, \dots m + 1; j = 0, \dots n + 1).$$

By the computation of the values of $V_{mn}(f)$ at eight points

$$(x_{i}, y_{j}), (x_{i}, y_{j+1}), \left(\frac{x_{i} + x_{i+1}}{2}, y_{j}\right), \left(\frac{x_{i} + x_{i+1}}{2}, y_{j+1}\right), (x_{i+1}, y_{j}), (x_{i+1}, y_{j+1}), \left(x_{i}, \frac{y_{j} + y_{j+1}}{2}\right), \left(x_{i+1}, \frac{y_{j} + y_{j+1}}{2}\right);$$
(2.4)

we have $V_{mn}(f)$, at all of the eight points. Since the eight point are the adapt interpolating knot group in D_{ij} , we have $V_{mn}(f) = f$ in D_{ij} . Therefore, the theorem holds.

It is easy to prove that $V_{mn}(f) \neq f$, as $f = x^2$ or y^2 , In order to make the theorem holds for all polynomials in P_2 , we have to introduce another linear operator

$$W_{mn}: C(\Omega) \to S_2^1(\Delta_{mn}^{2*}), \qquad (2.5)$$

$$W_{mn}(f) = \sum_{ij} \lambda_{ij}(f) B_{ij}(x, y), \qquad (2.6)$$

where

$$\lambda_{ij}(f) = 2f\left(\frac{x_i + x_{i+1}}{2}, \frac{y_j + y_{j+1}}{2}\right) - \frac{1}{4}(f(x_i, y_j) + f(x_i, y_{j+1}) + f(x_{i+1}, y_j) + f(x_{i+1}, y_{j+1})).$$
(2.7)

It is similar to result in [4], we have the following theorem:

Theorem 2.2. $W_{mn}(f) = f$ for any $f \in P_2$.

By the theorem 2.1, we have $W_{mn}(f) = f$ for $f \in P_1$ and f = xy. Now we need to verify $W_{mn}(f) = f$ for $f(x, y) = x^2$ and y^2 . Just the same as the proof of theorem 2.1, we only need to compute the values of $W_{mn}(f)$ in D_{ij} at the points

$$(x_{i}, y_{j}), (x_{i}, y_{j+1}), \left(\frac{x_{i} + x_{i+1}}{2}, y_{j}\right), \left(\frac{x_{i} + x_{i+1}}{2}, y_{j+1}\right)$$
$$(x_{i+1}, y_{j}), (x_{i+1}, y_{j+1}), \left(x_{i}, \frac{y_{j} + y_{j+1}}{2}\right), \left(x_{i+1}, \frac{y_{j} + y_{j+1}}{2}\right).$$
(2.8)

By means of computation of the value of $W_{mn}(f)$, we have $W_{mn}(f) = f$ in D_{ij} for $f(x, y) = x^2$ and y^2 . Therefore the theorem 2.2 holds.

338