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Abstract

This paper discusses the optimal preconditioning in the domain decomposition
method for Wilson element. The process of the preconditioning is composed of the
resolution of a small scale global problem based on a coarser grid and a number
of independent local subproblems, which can be chosen arbitrarily. The condition
number of the preconditioned system is estimated by some characteristic numbers
related to global and local subproblems. With a proper selection, the optimal
preconditioner can be obtained, while the condition number is independent of the
scale of the problem and the number of subproblems.

1. The Construction of Preconditioner

Let Ω be a polygon domain in R2, f ∈ L2(Ω). Consider the homogeneous Dirichlet
boundary value problem of Poisson equation,




−4u = f, in Ω

u|∂Ω = 0
(1.1)

Assume that, for domain Ω, there are a coarser subdivision TH with mesh size H

and an another one Th with mesh size h, which is obtained by refining TH . The both
subdivisions satisfy the quasi-uniformity and the inverse hypothesis.

For a given element T , Pm(T ) denotes the space of all polynomials with the de-
gree not greater than m, Qm(T ) denotes the space of all polynomials with the degree
corresponding to x or y not greater than m.

Let VH and Vh be some nonconforming finite element spaces corresponding to TH

and Th respectively. For problem (1.1), the nodal parameters on the boundary ∂Ω are
all zero. For finite element spaces Vh and VH , the finite element equations for problem
(1.1) are

ah(uh, vh) = (f, vh), ∀vh ∈ Vh, (1.2)
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aH(uH , vH) = (f, vH), ∀vH ∈ VH , (1.3)

respectively. Where (·, ·) is L2(Ω) inner product and

ah(v, w) =
∑

T∈Th
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dxdy,

aH(v, w) =
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T∈TH

∫
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For v ∈ Vh, denote the vector of its nodal parameters by Ch(v), and for v ∈ VH ,
denote the vector of its nodal parameters by CH(v). Thus, equations (1.2) and (1.3)
can be written as

AhCh(uh) = Fh (1.4)

AHCH(uH) = FH (1.5)

where Ah, AH are the stiffness matrices corresponding to problems (1.2) and (1.3)
respectively, and Fh, FH are the loading vectors.

Now consider how to solve (1.2). The Preconditioned Conjugate Gradient method
(PCG) would be used. So the preconditioning matrix Q needs to be constructed.

Let {ω1, ω2, · · · , ωM} be a domain decomposition of Ω, i.e., Ω = ∪M
k=1ωk, and ωm ∩

ωn = ∅(m 6= n). For each ωk, it is extended to Ωk, such that the boundary of Ωk is
consists of the edges of Th and

dist {∂ωk, ∂Ωk} ≥ L, (1.6)

where L is a fixed positive constant. For each element T ∈ Th, the number of subdo-
mains Ωk containing T does not exceed a fixed number.

Corresponding to Th, a subdivision of Ωk can be obtained, and the corresponding
nonforming finite element space is denoted by Vh,k. The corresponding finite element
equation is

ak(uk, vk) = (f, vk)k, ∀vk ∈ Vh,k, (1.7)

where (·, ·)k is L2(Ωk) inner product and

ak(uk, vk) =
∑

T∈Th,T⊂Ωk

∫

T

(∂uk

∂x

∂vk

∂x
+

∂uk

∂y

∂vk

∂y

)
dxdy.

The stiffness matrix is denoted by Ak.
Let Ek be the zero extension operator from Vh,k to Vh, i.e., ∀vk ∈ Vh,k,∀T ∈ Th

Ekvk|T =





vk|T , T ⊂ Ωk

0, otherwise
(1.8)


