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Abstract

Utilizing the properties of the smallest singular value of a matrix, we propose a
new, efficient and reliable algorithm for solving nonsymmetric matrix inverse eigen-
value problems, and compare it with a known method. We also present numerical
experiments which illustrate our results.

1. Introduction

Consider the following inverse eigenvalue problem:
Problem G. Let A(x) ∈ Rn×n be a real analytic matrix-valued function of x ∈

Rn. Find a point x∗ ∈ Rn such that the matrix A(x∗) has a given spectral set L =
{λ1, · · · , λn}. Here λ1, · · · , λn are given complex numbers and closed under complex
conjugation.

This kind of problem arises often in various areas of applications (see Freidland
et al.(1987) and references contained therein). The two special cases of Problem G,
which are frequently encountered, are the following problems proposed by Downing
and Householder(1956):

Problem A. Let A be a given n × n real symmetric matrix, and λ1, · · ·λn be n
given real numbers. Find an x∗ = (x∗1, · · · , x∗n)T ∈ Rn such that the matrix A + D(x∗)
has eigenvalue λ1, · · ·λn. Here D(x∗) = diag(x∗1, · · · , x∗n).

Problem M. Let A be a given n× n real symmetric positive definite matrix, and
λ1, · · ·λn be n given positive numbers. Find an x∗ = (x∗1, · · · , x∗n)T ∈ Rn with x∗i > 0
such that the matrix AD(x∗) has eigenvalue λ1, · · ·λn.

Problem A and M are known as the additive inverse eigenvalue problem and the
multiplicative inverse eigenvalue problem, respectively.

There are large literature on conditions for existence and uniqueness of solutions
to Problem G in many special cases (see Xu(1989) and references contained therein).
Here, we will assume that Problem G has a solution and concentrate on how to compute
it numerically.
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Although many numerical methods for solving various special cases of Problem
G have been proposed, only one, which is proposed by Biegler-König(1981), can be
applied to the nonsymmetric case of A(x). In this paper we propose a new, efficient
and reliable algorithm for solving Problem G, which is based on the properties of the
smallest singular value of a matrix, therefore, called a smallest singular value method.
This algorithm also has no restriction of symmetry, and is more efficient and reliable
than Biegler-König’s algorithm.

Notation. Throughout this paper we use the following notation. Rm×n is the
set of all m × n real matrices, and Cm×n the set of all m × n complex matrices.
Rn = Rn×1 and Cn = Cn×1. I is the n× n identity matrix. The superscript T and H
are for transpose and conjugate transpose, respectively. det(A) and tr(A) denote the
determinant and the trace of a matrix A, respectively. σmin(A) denotes the smallest
singular value of a matrix A. The norm ‖x‖ stands for the usual Euclidean norm of
vector x, and ‖x‖∞ for the max-norm of vector x.

2. Formulation of the Numerical Methods

We will now describe two methods for solving Problem G in the case where the
given eigenvalues are distinct. Assume there exists a solution x∗ to Problem G. In
some neighborhood of x∗ we will first consider the following formulation of Problem G:

Formulation I. Solve the nonlinear system

f(x) = (f1(x), · · · , fn(x))T = 0, (2.1)

where
fi(x) = σmin(A(x)− λiI) (2.2)

for i = 1, 2, · · · , n.
In order to apply Newton’s method to (2.1), we need the partial derivatives of f(x)

with respect to the x1, · · · , xn. To calculate these derivatives we apply Sun’s Theorem
[9]:

Theorem. Let x ∈ Rl and B(x) ∈ Cm×n. Suppose that Re(B(x)) and Im(B(x))
are real analytic matrix-valued function of x. If σ is a simple non-zero singular value of
B(x(0)), v ∈ Cn and u ∈ Cm are associated unit right and left singular vectors, respec-
tively, then there exists a simple singular value σ(x) of B(x) which is a real analytic
function of x in some neighborhood of x(0), and

σ(x(0)) = σ,
∂σ(x(0))

∂xj
= Re

(
uH ∂B(x(0))

∂xj
v

)
.

Utilizing the above theorem, if fi(x) 6= 0, we get

∂fi(x)
∂xj

= Re
(

ui(x)H ∂A(x)
∂xj

vi(x)
)

, (2.3)


