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Abstract

Recently , M. Hanke and M. Neumann[4] have derived a necessary and sufficient

condition on a splitting of A = U−V , which leads to a fixed point system , such that

the iterative sequence converges to the least squares solution of minimum 2-norm

of the system Ax = b. In this paper, we give a necessary and sufficient condition

on the splitting such that the iterative sequence converges to the weighted Moore-

Penrose solution of the system Ax = b for every x0 ∈ Cn and every b ∈ Cm. We

also provide a necessary and sufficient condition such that the iterative sequence

is convergent for every x0 ∈ Cn .

1. Introduction

It is well-known that the most prevalent approach for obtaining a fixed point system

of the following system

Ax = b, A ∈ Cm×n (1.1)

is via a splitting of the coefficient matrix A into

A = U − V. (1.2)

If m = n and U is nonsingular, we present the equivalent formulation of (1.1) by

x = U−1V x + U−1b. (1.3)

If m 6= n or if U is not invertible, we can, by taking a generalized inverse U− of U

(instead of U−1), extend (1.3) by considering the fixed point system

x = U−V x + U−b. (1.4)

Generalized inverses of matrices play a key role in our present work. It is instructive

for our purposes to think of reflexive inverses as weighted Moore-Penrose inverses and

to call the corresponding solution which induce weighted Moore-Penrose solution. In

section 2, we summarize preliminary results from the literature on generalized inverses
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which are most relevant to this paper briefly. In section 3 , we derive a necessary and

sufficient condition for a splitting (1.2) to yield a fixed point iterative scheme such that

the limit point x̄ is a weighted Moore-Penrose solution to (1.1). In section 4, we provide

a necessary and sufficient condition such that the iterative sequence is convergent for

every x0 ∈ Cn and every b ∈ Cm. In section 5, a numerical experiment is presented to

illustrate the performance of the splitting.

2. Preliminary and Background Results

Let A ∈ Cm×n and suppose X ∈ Cn×m. Then X is called a reflexive inverse of A if

AXA = A and XAX = X. (2.1)

Given a subspace R ⊆ Cn which is complementary to N(A) and a subspace N ⊆ Cm

which is complementary to R(A), then there exists a unique reflexive inverse X of A

such that

R(X) = R and N(X) = N (2.2)

and conversely, if X is a reflexive inverse of A, then R(X) and N(X) are complementary

subspace of N(A) and R(A). In the following we shall use R(A) and N(A) to denote

the range and the nullspace of a matrix A. Accordingly we write A−

R,N := X. It is

known that

A−

R,NA = PR,N(A) and AA−

R,N ,= PR(A),N , (2.3)

where PR,N(A) and PR(A),N denote the projectors on R along N(A) and on R(A) along

N, respectively.

With any reflexive inverse X of A one can associate two vector norms, one in Cnand

one in Cm, as follows:

‖x‖R,N(A) := (‖PR,N(A)x‖
2
2 + ‖(I − PR,N(A))x‖

2
2)

1/2,∀x ∈ Cn

and

‖y‖R(A),N := (‖PR(A),Ny‖2
2 + ‖(I − PR(A),N )y‖2

2)
1/2,∀y ∈ Cm.

Due to the finite dimensional setting which we work in, for any vector b ∈ Cm the set

δb := {x̄ ∈ Cn : ‖b − Ax̄‖R(A),N = infx∈Cn‖b − Ax‖R(A),N} 6= φ (2.4)

and the vector z̄ := A−

R,N b has the following properties:

z̄ ∈ δb and ‖z̄‖R,N(A) = minx̄∈δb
‖x̄‖R,N(A). (2.5)

Therefore we can interpret any reflexive inverse as a weighted Moore-Penrose inverse

and vice versa z̄ as a weighted Moore-Penrose solution to the system Ax = b.

We next mention some choices of R and N which correspond to reflexive inverses

that are frequently used in applications and in the literature. First,suppose that N =


