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Abstract. The high-order harmonic generation (HHG) has attracted much attention due to its wide 

application in attosecond science in last decades. The selection rules have also been broadly studied in 

experiments and theories since they play an important role in HHG. In this review, we give an overview of 

recent developments on selection rules of HHG from atoms to molecules. For targets with rotational 

symmetries, if the rotational symmetries of targets and laser pulses are the M-fold (the projective symmetry 

on the laser polarization plane) and L-fold, the selection rules are Nk±1, where N is the the greatest common 

divisor of M and L. However, for asymmetric molecules in non-Born-Oppenheimer approximation, the 

situation is more complicated, where the nuclear dipole acceleration can produce even harmonics, but it is 

three orders lower than that of the electron. Hence, the HHG is mainly relied on the electronic dipole 

acceleration. In this case, the broken degree of system-symmetry dominates the generation of even-order 

harmonics. 

 1. Introduction 

When atoms or molecules interact with strong laser fields, many 
interesting intense field phenomena will occur, such as high-order 
harmonic generation (HHG) [1-10], non-sequential 
double ionization [11], below-threshold harmonic generation (BTH) 
[12-16], multiple ionization [17,18], above-threshold ionization 
[19], and Coulomb explosion (CE) [20], and so on. These 
phenomena deepen on our understanding of dynamic 
mechanisms in the interaction between atoms or molecules and 
intense fields. 

The HHG attracts a lot of attention since it provides a new 
type of coherence light source of ultra-short wavelength. Many 
fancy phenomena and applications have also been found in last 
decades [21-26]. One of the most important achievements is that 
the HHG supplies us an important avenue to generate ultra-short 
attosecond laser pulses [27, 28], which pushes the investigations 
on the ultra-fast measurement from the femtosecond magnitude 
to the attosecond magnitude [26].  

The step of HHG developments dramatically increased in 
1980s. Many groups successfully observed HHG from gaseous 
targets in experiments [29-34]. However, the early experiments 
only observed the harmonics with few orders. In 1993, Macklin et 
al. [33] firstly found that harmonics beyond 100 orders could be 
produced by a laser field with the wavelength of 806nm and the 
peak intensity ≥10

15
 W/cm

2
. At the same year, L’Huillier et al. also 

reported the generation of 135th harmonics from Ne driven by a 
1ps, 1.06µm laser pulse [34]. These findings indicate the potential 
possibility for the high efficient generation of coherent radiation 
at the extreme ultraviolet region (XUV). 

After the HHG potential applications were discovered, the 
HHG has been widely investigated [35-37]. So far the physical 

process of HHG can be well understood by the semi-classical 
three-step model [38]: ionization, acceleration and recombination. 
Moreover, the harmonic spectra produced from the atoms in a 
multi-cycle laser pulse present some common features: (i) the 
harmonic spectrum consists of three parts: a fast drop in the low-
order yield, following a plateau and a sharp cutoff [39], the cutoff 
energy is around Ip+3.17Up, where Ip is the ionization energy of the 
atom and Up is the ponderomotive energy [40], (ii) only odd 
harmonics are produced [41-43]. In order to explain the 
disappearance of even harmonics, the early explanation is given 
upon the foundation of a perturbative analysis about the non-
linear optical susceptibilities [44]. However, since perturbation 
theory has been broken down in so strong fields, one may expect 
that a more reasonable explanation can be proposed. Then a non-
perturbative proof which invokes the concept of inversion 
symmetry is given by Ben-Tal et al. [45]. In this theory, they 
concluded that when the system possesses inversion symmetry, 
the selection rules for HHG are 2k±1 (k=1,2,3,...), that is to say, the 
harmonic spectrum is composed of only odd harmonics. 

Molecules have more degrees of freedom than that of atoms, 
thus the selection rules for the molecular high-order harmonic 
generation (MHOHG) are more complex. Specifically, in a circularly 
polarized (CP) laser pulse, the allowed harmonics for molecular 
targets are determined by the rotational symmetries of molecules. 
If a molecule possesses M-fold rotational symmetry, the allowed 
harmonic orders in one CP laser field are kM±1 (M is a positive 
integer and k=0,1,2,...), in which the efficiency of HHG is low [46]. 
In a linearly polarized (LP) laser field, the molecules with inversion 
symmetry obey the same selection rules as atoms [47]. Very 
recently, the group of professor Peixiang Lu [47] investigated the 
selection rules in HHG from more complicated molecules driven by 
different laser fields and got an important conclusion: the allowed 
harmonic orders can be directly judged by the associated 
rotational symmetries (ARS) of the target-laser system. For the 
stereoscopic targets, the ARS is determined by the symmetry of 
the projection of the targets rather than by the symmetry of the 
targets itself. For the laser pulse, the symmetry contributing to 
ARS can be decided by the symmetries of the Lissajous figure and 
its dynamical directivity [47]. Recently, the circularly polarized 
molecular high-order harmonics have been generated due to the 

mailto:duhch@lzu.edu.cn
mailto:hubt@lzu.edu.cn


Journal of Atomic and Molecular Science  ARTICLE 

This journal is ©  Copyright 2017, Global Science Press J. At. Mol. Sci., 2017, 1, 10-17 | 11 

optional selection rules of HHG in a bicircular laser [48, 49]. 
However, for asymmetric molecules in non-Born-Oppenheimer 
approximation, the situation is confusing. In 2001, Kreibich et al. 
firstly found that a model HD molecule can produce intense even 
harmonics in non-Born-Oppenheimer approximation [50]. Then 
the even harmonics were also observed from asymmetric 
molecules in Born-Oppenheimer approximation [51]. These works 
seemed to indicate that the even-order harmonics could appear as 
long as the systemic symmetry was broken regardless of in Born-
Oppenheimer approximation or non-Born-Oppenheimer 
approximation. Nevertheless, in 2016, Du et al. found that the HD 
molecule still generated only odd harmonics in non-Born-
Oppenheimer approximation though the generation of even 
harmonics is possible in principle [52]. Then Yue et al. investigated 
the HHG for HD

+
 and HeH

2+
 in non-Born-Oppenheimer 

approximation and found that HD
+
 generated only odd harmonics 

while HeH
2+

 generated both odd and even harmonics [53]. And 
they invoke a concept of broken degree of system-symmetry to 
interpret the different odd-even property between the harmonic 
spectra of asymmetric molecules HD

+
 and HeH

2+
 [53]. 

The purpose of this review is to give an account of the history 
and recent status of the studies on the selection rules for HHG 
from atoms or molecules in Born-Oppenheimer approximation 
and non-Born-Oppenheimer approximation. The organization of 
this paper is as follows. In Sec. 2, we briefly introduce the methods 
of solving the time-dependent Schrödinger equation (TDSE). In Sec. 
3, we will present the selection rules for HHG in Born-
Oppenheimer approximation and non-Born-Oppenheimer 
approximation. Finally, we will summarize in Sec. 4. 

2. Theoretical methods  

In this section, we will sketch some theoretical methods for the 
HHG, including the numerical solution to TDSE in Born-
Oppenheimer approximation and non-Born-Oppenheimer 
approximation.  

2.1. Numerical solution of TDSE in Born-Oppenheimer 
approximation 

Here we just present a one-dimensional (1D) numerical solution of 
TDSE using the split-operator method for the targets with two 
nuclei. For multiple-dimensional numerical solutions with different 
methods (e. g. B-spline). The readers can gain more details in 
relevant references and a recent review [54]. 

The 1D TDSE describing the interaction between targets and 
strong laser pulses in the dipole approximation and the length 
gauge can be given as (atomic units are used throughout) 
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with  ( )     √  (    ⁄ )    √  (    ⁄ ) ⁄⁄ , 
where Z1 and Z2 are the electric charges of two nuclei, and a is the 
soft-core parameter. R is the inter-nuclear distance. E(t) is the 
laser field. In Born-Oppenheimer approximation, it assumes that 
the molecular vibrational period is longer than the laser pulse 
duration. Thus the nuclei are considered to be frozen. After the 
initial state is obtained by propagation in imaginary time. The 
equation (1) can be numerically solved by the split-operator 
method [55]. 
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where T is the kinetic operator, and V is the interaction potential 
considering all the potential energy of systems. Then through the 

Ehrenfest's theorem [56], the dipole acceleration a(t) can be given 

as  ( )   ⟨ ( )| ⃑⃑  | ( )⟩. Finally, one can obtain the harmonic 

spectrum by Fourier-transforming the dipole acceleration 
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q is the harmonic order and ω0 is the circular frequency of laser 
field. 

2.2. Numerical solution of TDSE in non-Born-Oppenheimer 
approximation 

To show the effect of the nuclear motion in the process of 
HHG, the numerical calculation of TDSE in non-Born-Oppenheimer 
approximation is proposed [50]. In this part, we only introduce a 
numerical calculation for a typical HD molecule with two electrons 
and two nuclei. In this calculation, the interaction between the HD 
molecule and the laser field is treated within dipole approximation. 
Then the Hamiltonian reads 
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with the dipole operator  ̂   (     )    . For the 
interactions, it chooses the soft Coulomb potential [57] 
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z1 and z2 are the coordinates of two electrons. R is the inter-
nuclear distance, and Mn=M1+M2 is the total nuclear mass.    
  (    )⁄  and          ⁄  are respectively the reduced 
mass of nucleus and electron. E(t) is the laser field, and 
  (     )   ⁄  is the mass-asymmetry parameter. The time-
dependent wave function can be obtained by numerical solving 
TDSE using the Crank-Nicolson method [58]. Then the dipole 
moment can be got by 
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de(t) and dn(t) are the electronic dipole moment and the relative 
nuclear dipole moment, respectively. The corresponding dipole 
acceleration is given via Ehrenfest's theorem [56] 
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where ae(t) and an(t) are the electronic dipole acceleration and 
the relative nuclear dipole acceleration. The harmonic spectrum 
can be easily got by Fourier-transforming the dipole acceleration. 

For the numerical calculation of TDSE for molecular ion, it is 
similar to that of HD molecule. The relative details can be found in 
Refs. [50, 53, 59]. 

3. The selection rules for HHG from atoms and 
molecules in Born-Oppenheimer approximation 
and non-Born-Oppenheimer approximation 

After the HHG being a hot topic, the selection rules as an 
important feature of HHG attract much attention. We will start 
from investigations of the selection rule for atomic HHG, including 
the early experimental results and the theoretical studies. Then 
we will review the selection rules of HHG from molecules 
possessing symmetry to asymmetric molecules in Born-

 (4) 


