# Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon

A. Hanafi<sup>*a,b,\**</sup>

<sup>a</sup> Community Collage-Al-Quwayiyah, Shaqra University, Saudi Arabia <sup>b</sup> Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, Egypt

Received 8 October 2009; Accepted (in revised version) 23 November 2009 Published online 2 August 2010

**Abstract.** Adsorption studies of  $Cs^+$ ,  $Tl^+$ ,  $Sr^{2+}$  and  $Co^{2+}$  on activated carbons from aqueous solutions are reported. The carbon samples were characterized using different techniques. The chemical nature of the surface of the carbon was studied. Optimal conditions for adsorption of the metal ions have been identified. The comparative study for the metal ions was also considered in the orespace of different anions. The data suggest the possible use of activated carbon for preconcentration and separation of some cations.

PACS: 07.88.+y, 07.89.+b, 68.43.-h

Key words: radionuclides, activated carbon, batch technique, adsorption

## 1 Introduction

Adsorption is a significant pher n in many physical, biological and chemical processes. It is a process in mol cules or atoms of one phase interpenetrate nearly other hase to form a solution with it. The material that concenuniformly those of a trated or adsorbed to ce is called the adsorbate while the adsorbing phase is termed the adsorbent. There are any substances which can be used as adsorbents such as fly ash [1], metal oxides, zeolites, biomass [2], goethite, pyrite fines, hydroxides [3], clays, peanut hulls [4], sand and active carbon [5, 6]. Because of their large surface area and their high degree of surface reactivity, active carbons are regarded as very good adsorbents for the removal of both organic [7–9] and heavy metal contaminants and can be used in a number of possible technological and analytical applications.

The presence of heavy metals in the environment is a major concern due to their toxicity to many life forms. In the past few years there has been a manifest interest in the

http://www.global-sci.org/jams

292

<sup>\*</sup>Corresponding author. Email address: hassanhanfi@hotmail.com (A. Hanafi)

adsorption process in solution because these processes play an important role in phenomena such as the environmental transport of heavy metals [10, 11], analytical separations [12] and preconcentration of metals present in trace amounts [13]. With the increase in the number of nuclear power reactors, the radioactive pollution of water is growing, this problem could be alleviated by means of suitable adsorption processes, also activated carbons are used extensively as adsorbents of different compounds [14]. Factors affecting the adsorption process, e.g., pH, activated carbon dosage, contact time, initial metal concentration and solution temperature were studied [15]. Single copper and nickel adsorption from aqueous solutions onto a granular activated carbon were reported. The present paper reports the results of a study of the adsorption of  $Cs^+$ ,  $Tl^+$ ,  $Sr^{2+}$  and  $Co^{2+}$  radionuclides from aqueous solutions on three activated carbons, two of them were obtained from almond shells and the other one (sample M) was obtained from commercial sources.

## 2 Experimental work

#### 2.1 Adsorbents



Two of the three activated carbons used as adso study (samples A-8 and A-14) were prepared using almond shells as r The activation step was carried out in a flow of carbon dioxide (75 cm<sup>3</sup> hin<sup>-</sup> during heating at 1123 K (heating rate= 5 K·min<sup>-1</sup>) for 8h (sample A-8) and 14 sam le-14). The activated carbons were characterized using various techniques surface area, pore volume and base neutralization capacity. Their textural e determined from adsorption measurements of CO<sub>2</sub> at 298 K. From tion surface area and micropore volume were obtained with aid of the Dubin Raà hkevich equation [16]. The volume of mesopores and that of the macropore termined independently using a Carlo Erba mercury porosimeter, model 200. of the three carbon samples was measured in a suspenof CO<sub>2</sub> free distilled water, the contact time was 48h sion of 1 g of the and the temper as 298 K. The base neutralization capacity of the carbons was determined with a TNacA solution. Ash contents were obtained after burning in air at 973 K for 3 h.

### 2.2 Adsorption measurement

The adsorption of metal ions by the activated carbons was followed by adding 0.1 g of carbon to a vial containing 4cm<sup>3</sup> of an aqueous solution of the corresponding radioiso-tope. The radioisotope (<sup>60</sup>Co) used in this study were supplied by Hot Laboratories Centre-Egyptian Atomic Energy Authority and <sup>82</sup>Sr and <sup>202</sup>Tl radioisotopes was supplied by Cyclotron Project-Egyptian Atomic Energy Authority and in this study, I used inactive CsCl solution with concentration 7 M. The amount of carbon and the volume of aqueous solution in all adsorption measurements were kept constant except where