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HIGH-ORDER COMPACT DIFFERENCE METHODS FOR

SIMULATING WAVE PROPAGATIONS IN EXCITABLE MEDIA

JICHUN LI AND JIANWEI LI

Abstract. In this paper, we present a study of some high-order compact difference schemes
for solving the Fitzhugh-Nagumo equations governed by two coupled time-dependent nonlinear

reaction diffusion equations in two variables. Solving the Fitzhugh-Nagumo equations is quite

challenging, since the equations involve spatial and temporal dynamics in two different scales
and the solutions exhibit shock-like waves. The numerical schemes employed have sixth order

accuracy in space, and fourth order in time if the fourth order Runge-Kutta method is adopted

for time marching. To improve efficiency, we also propose an ADI scheme (for two dimensional
problems), which has second order accuracy in time. Numerical results are presented for plane

wave propagation in one dimension and spiral waves for two dimensions.
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1. Introduction

In this work, we consider the following two-dimensional (2D) Fitzhugh–Nagumo
type model (cf. [1, 2]) for the description of waves in excitable media given by

(1)
∂u

∂t
= ∇2u+ f(u, v),

∂v

∂t
= g(u, v),

where ∇2 = ∂2

∂x2 + ∂2

∂y2 denotes the Laplace operator, u = u(x, y, t) and v = v(x, y, t)

are the so-called excitation variable and recovery variable, respectively. The func-
tions f(u, v) and g(u, v) represent the local reaction kinetics of the species. Here
we adopt the simplified Barkley model given by [3]

(2) f =
1

ε
u(1− u)(u− v + b

a
), g = u− v,

where the constants a and b control the excitability threshold and duration, and ε
determines the time scale of the fast variable u. Usually, ε is selected quite small
such that the time scale of u is several orders of magnitude faster than that of v. A
larger value of a would increase the excitation variable duration, whereas a larger
ratio b/a increases the excitation threshold.

To make the problem (1) complete, we assume that (1) hold true for (x, y, t) ∈
Ω × [0, T ], where Ω ⊂ R2 is an open, bounded, connected polygonal domain with
boundary ∂Ω, along with zero-flux boundary conditions

(3)
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× (0, T ),

where n is the unit outer normal vector of ∂Ω, and appropriate initial conditions

(4) u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y) in Ω.
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The FitzhughNagumo model (1)–(4) is the most widely used mathematical model
of excitation and propagation of impulse in excitable media such as nerve mem-
branes. Over the years, there have been many studies devoted to this model
and its many variations (e.g., [4] and references therein). Due to the complex-
ity of the problem, numerical simulation plays a very important role in studing the
FitzhughNagumo model. For example, Barkley [3] presented a simple and efficient
finite difference algorithm (attached with a complete subroutine) for solving the 2D
FitzhughNagumo equations. Later, Olmos and Shizgal [5] proposed a Chebyshev
multidomain method, and a new finite difference method for solving both 1D and
2D FitzhughNagumo equations. Ramos [6] numerically studied the propagation of
spiral waves in 2D reactivediffusive media. In [7], Amdjadi proposed a numerical
method for testing the dynamics and stability of spiral waves in excitable media.
Bürger, Ruiz-Baier and Schneider [8] presented some fully space-time adaptive mul-
tiresolution methods based on the finite volume method and Barkley’s method for
simulating the complex dynamics of waves in excitable media. In [9], Dehghan and
Fakhar-Izadi developed two pseudospectral methods based on Fourier series and
rational Chebyshev functions to solve the 1D Nagumo equation.

The main objective of the present paper is to introduce the high-order compact
difference method ([10, Ch.5] and references) to simulate the wave propagation
problem in excitable media. Previous studies (cf. [10, Ch.5] and references therein)
have shown that the high-order compact difference method is a very efficient al-
gorithm and has a much smaller dispersive error compared to the standard same
order finite difference method.

The rest of the paper is organized as follows. In Sect. 2, we demonstrate that
how the high-order compact difference scheme can be constructed for both 1D and
2D problems. Numerical results are presented in Sect. 3 to show the efficiency of
our scheme. We conclude the paper in Sect. 4.

2. Derivation of the compact difference scheme

In the high-order compact difference methods (cf. [11, 12, 13, 14] and references
therein) , the spatial derivatives in the governing PDEs are not approximated di-
rectly by the traditional explicit finite differences, but are evaluated through solving
a system of linear equations. More specifically, given scalar pointwise values u, the
derivatives of u are obtained by solving a tridiagonal or pentadiagonal system. Be-
low we will show how to develop 1D and 2D high-order compact difference schemes
for solving the FitzhughNagumo equation.

2.1. 1D compact difference scheme. First, let us construct a sixth-order com-
pact difference scheme to evaluate the second derivatives. Consider a uniform 1D
mesh consisting of N points:

x1 < x2 < · · · < xi−1 < xi < xi+1 < · · · < xN

with mesh size h = xi+1 − xi. Given the function values ui = u(xi), 1 ≤ i ≤ N , the

approximate second derivatives u
′′

i at interior points can be reconstructed by the
following three point formula:
(5)

αu
′′

i−1+u
′′

i +αu
′′

i+1 =
a

h2
(ui+1−2ui+ui−1)+

b

4h2
(ui+2−2ui+ui−2), 2 ≤ i ≤ N−2,


