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SUPERCONVERGENCE AND A POSTERIORI ERROR

ESTIMATES OF A LOCAL DISCONTINUOUS GALERKIN

METHOD FOR THE FOURTH-ORDER INITIAL-BOUNDARY

VALUE PROBLEMS ARISING IN BEAM THEORY

MAHBOUB BACCOUCH

Abstract. In this paper, we investigate the superconvergence properties and a posteriori error
estimates of a local discontinuous Galerkin (LDG) method for solving the one-dimensional linear
fourth-order initial-boundary value problems arising in study of transverse vibrations of beams.
We present a local error analysis to show that the leading terms of the local spatial discretization
errors for the k-degree LDG solution and its spatial derivatives are proportional to (k+1)-degree
Radau polynomials. Thus, the k-degree LDG solution and its derivatives are O(hk+2) supercon-
vergent at the roots of (k + 1)-degree Radau polynomials. Computational results indicate that
global superconvergence holds for LDG solutions. We discuss how to apply our superconvergence
results to construct efficient and asymptotically exact a posteriori error estimates in regions where
solutions are smooth. Finally, we present several numerical examples to validate the supercon-
vergence results and the asymptotic exactness of our a posteriori error estimates under mesh
refinement. Our results are valid for arbitrary regular meshes and for P k polynomials with k ≥ 1,
and for various types of boundary conditions.
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1. Introduction

The goal of this paper is to investigate the superconvergence properties and
develop a simple procedure to compute a posteriori error estimates of the spatial
errors for the local discontinuous Galerkin (LDG) method applied to the following
linear fourth-order initial-boundary value problem in one space dimension:

(1.1a) utt + uxxxx = f(x, t), x ∈ [0, L], t ∈ [0, T ],

subject to the initial conditions

(1.1b) u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ [0, L],

and to one of the following four kinds of boundary conditions which are commonly
encountered in practice (t ∈ [0, T ]):

u(0, t) = u1(t), uxx(0, t) = u2(t), ux(L, t) = u3(t), uxxx(L, t) = u4(t),(1.1c)

u(0, t) = u1(t), uxx(0, t) = u2(t), u(L, t) = u3(t), uxx(L, t) = u4(t),(1.1d)

u(0, t) = u1(t), ux(0, t) = u2(t), u(L, t) = u3(t), ux(L, t) = u4(t),(1.1e)

u(0, t) = u(L, t), ux(0, t) = ux(L, t), uxx(0, t) = uxx(L, t), uxxx(0, t) = uxxx(L, t).(1.1f)

In our analysis we assume that the interval [0, T ] is a finite time interval, and select
the side conditions and the source, f(x, t), such that the exact solution, u(x, t), is
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a smooth function on [0, L] × [0, T ]. Even though the analysis in this paper is
restricted to (1.1a), the same results can be directly generalized to the well-known
Euler-Bernoulli beam equation with constant and variable geometrical and physical
properties

(E(x)I(x)uxx)xx + ρ(x)A(x)utt = f(x, t),

where u(x, t) is the deflection of the neutral axis of the beam, E(x) is the Young’s
modulus of elasticity, I(x) is the area moment of inertia of the cross section with
respect to its neutral midplane, A(x) is the cross section in the yz-plane, ρ(x) is
the mass density per unit length, and f(x, t) is the transverse load.

The fourth-order Euler-Bernoulli beam equation considered in this paper plays a
very important role in both theory and applications. This is due to its use to de-
scribe a large number of physical and engineering phenomenons such as the flexural
vibrations of a slender isotropic beam within the framework of Euler-Bernoulli as-
sumptions. Several numerical schemes are proposed in the literature for solving
(1.1a). Consult [11, 12, 14, 35, 36, 37, 41, 42, 47] and the references cited therein
for more details. In this paper, we develop, analyze and test a superconvergent
LDG method for solving (1.1). The proposed scheme is based on the fourth-order
Runge-Kutta method approximation in time and on the LDG approximation in the
spatial discretization. Our proposed scheme for solving the beam equation extend-
s our previous work [16, 23] in which we investigated the convergence properties
and the error estimates of the LDG method applied to the second-order wave and
convection-diffusion equations in one space dimension.

The main motivation for the LDG method proposed in this paper originates from
the LDG techniques which have been developed for convection-diffusion equations.
The LDG finite element method considered here is an extension of the discontinuous
Galerkin (DG) method aimed at solving ordinary and partial differential equations
(PDEs) containing higher than first-order spatial derivatives. The DG method is
a class of finite element methods using completely discontinuous piecewise polyno-
mials for the numerical solution and the test functions. With discontinuous finite
element bases, they capture discontinuities in, e.g., hyperbolic systems with high
accuracy and efficiency; simplify adaptive h−, p−, r−, refinements and produce
efficient parallel solution procedures. The DG method was initially introduced by
Reed and Hill in 1973 as a technique to solve neutron transport problems [44].
Lesaint and Raviart [40] presented the first numerical analysis of the method for
a linear advection equation. Since then, DG methods have been used to solve or-
dinary and partial differential equations. Consult [32, 17] and the references cited
therein for a detailed discussion of the history of DG method and a list of important
citations on the DG method and its applications.

The LDG method for solving convection-diffusion problems was first introduced by
Cockburn and Shu in [33]. They further studied the stability and error estimates
for the LDG method. Castillo et al. [26] presented the first a priori error analy-
sis for the LDG method for a model elliptic problem. They considered arbitrary
meshes with hanging nodes and elements of various shapes and studied general
numerical fluxes. They showed that, for smooth solutions, the L2 errors in ∇u and
in u are of order k and k + 1/2, respectively, when polynomials of total degree not
exceeding k are used. Cockburn et al. [31] presented a superconvergence result for
the LDG method for a model elliptic problem on Cartesian grids. They identified


