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UNCONDITIONAL STABILITY OF A CRANK-NICOLSON

ADAMS-BASHFORTH 2 NUMERICAL METHOD

ANDREW D. JORGENSON

Abstract. Nonlinear partial differential equations modeling turbulent fluid flow and similar pro-

cesses present special challanges in numerical analysis. Regions of stability of implicit-explicit
methods are reviewed, and an energy norm based on Dahlquist’s concept of G-stability is de-

veloped. Using this norm, a time-stepping Crank-Nicolson Adams-Bashforth 2 implicit-explicit

method for solving spatially-discretized convection-diffusion equations of this type is analyzed and
shown to be unconditionally stable.
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1. Introduction

The motivation of this work is to consider the stability of numerical methods
when applied to ordinary differential equations (ODEs) of the form

u′(t) +Au(t)− Cu(t) +B(u)u(t) = f(t),(1)

in which A,B(u) and C are d× d matrices, u(t) and f(t) are d-vectors, and

A = AT � 0, B(u) = −B(u)T , C = CT < 0 and A− C � 0.(2)

Here � and < denote the positive definite and positive semidefinite ordering, re-
spectively.

Models of the behavior of turbulent fluid flow using convection-diffusion partial
differential equations discretized in the spatial variable give rise to a system of
ODEs, such as

·
uij(t) + b · ∇huij − (ε0(h) + ν)∆huij + ε0(h)∆huij = fij ,(3)

where ∆h is the discrete Laplacian, ∇h is the discrete gradient, and ε(h) is the
artificial viscosity parameter. System (3) is of the form (1) and (2), where

A = −(ε0(h) + ν)∆h, C = −ε0(h)∆h, B(u) = b · ∇h.

In this case the matrix B(·) is constant, but in general it may depend on u, and
thus the system is allowed to have a nonlinear part. A linear multistep method for
the numerical integration a system u′(t) = F (t, u), such as (1), is

k∑
j=−1

αjun−j = ∆t

k∑
j=−1

βjFn−j ,(4)

where t is defined on I = [t0, t0 + T ] ⊂ R, un−j ∈ Rd, Fn−j = F (tn−j , un−j).
This work will discuss the regions of stability for implicit-explicit (IMEX) meth-

ods applied to systems of the form (1), and prove that unconditional stability (the
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method’s stability properties are independent of the choice of step-size ∆t) hold-
s for a proposed Crank-Nicolson Adams-Bashforth 2 (CNAB2) IMEX numerical
method,
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where En+ 1
2

= 3
2un + 1

2un−1, an explicit approximation of u(tn+ 1
2
). This method

is a second-order convergent numerical scheme of the form (4). Section 2 discusses
earlier related results for IMEX methods, and Section 3 motivates the unconditional
stability analysis of (5) by deriving illustrative stability results for related scalar
IMEX methods. With these results in mind, unconditional stability of method (5)
is proven in Section 4. Section 5 demonstrates the theory with several numerical
tests, the last of which shows the method’s effectiveness when applied to a system
that is a close variation of (3).

2. Previous IMEX Stability Results

In [5], Frank et al. consider applying IMEX methods to a system of ODEs of
the form

u′(t) = F (t, u(t)) +G(t, u(t)),

where F is the stiff, and G is the non-stiff parts of the system. Considering the
scalar test equation

u′(t) = λu(t) + γu(t),

they find that under these conditions, λ∆t and γ∆t lying in the regions of stability
of their respective methods are sufficient conditions for the IMEX method to be
assymptotically stable. As is demonstrated in Section 3, these are not necessary
conditions when the system is under assymptions (2), which is due to the additional
requirement that A− C be positive-definite.

Akrivis et al. study a system of the same form as (1) except that B is assumed to
be self-adjoint instead of skew-symmetric. They analyze a general class of methods
that are implicit in all linear terms, and explicit in all nonlinear terms, and show
these methods to be absolutely stable [1].

Finally, Anitescu et al. [2] show that the first-order IMEX method

un+1 − un
∆t

+Aun+1 − Cun +B(u)un+1 = fn+1(6)

is unconditionally stable. Unlike in [1] there are two linear terms, one of which will
be approximated explicitly, while the solution vector in the nonlinear term B(u)u(t)
is computed using an implicit scheme.

3. Stability for Scalar IMEX Methods

Consider the Cauchy problem

y′(t) = (ε+ ν)λy(t)− ελy(t),(7)

y : R→ R, y(0) = 1, λ < 0, 0 < ν, 0 < ε.(8)


