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A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR

NONSYMMETRIC LINEAR SYSTEMS

YINGZHE FAN AND ZHANGXIN CHEN

Abstract. Motivated by the paper [16], where the authors proposed a method to solve a symmet-
ric positive definite (SPD) system Ax = b via a sparse-sparse iterative-based projection method,
we extend this method to nonsymmetric linear systems and propose a modified method to con-
struct a sparse approximate inverse preconditioner by using the Frobenius norm minimization
technique in this paper. Numerical experiments indicate that this new preconditioner appears
more robust and takes less time of constructing than the popular parallel sparse approximate
inverse preconditioner (PSM) proposed in [6]
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1. Introduction

Consider the solution of a sparse nonsymmetric linear system of algebraic equa-
tions:

(1) Ax = b,

where A ∈ Rn×n is a nonsingular matrix, x ∈ Rn is an unknown vector, and
b ∈ Rn is a given vector. This system arises in many areas of scientific computing,
such as in fluid mechanics [9], solid mechanics [4], and fluid flow in porous media
[5]. When A is large and sparse, direct solvers such as Gauss elimination may
bring ’fill-in’ phenomenon and require huge amount of work and memory storage.
Another approach to solve this system uses Krylov subspace iterative methods such
as the generalized minimal residual method (GMRES) and the biconjugate gradient
stabilized method (BiCGSTAB) [15, 18]. These methods require less storage but
the rate of convergence depends strongly on the spectral distribution of matrix
A. Usually, the more clustered the eigenvalues of A are, the faster these methods
converge. Toward this end, we may apply a preconditioning technique; i.e., we may
transform system (1) into the following system:

(2) AMy = b, x = My or MAx = Mb,

where M is a nonsingular matrix and is required to be cheaply constructed, called a
preconditioner. If M ≈ A−1, the coefficient matrix AM of system (2) always has a
‘good’ spectral distribution, and then using the Krylov subspace iterative methods
for solving (2), we can achieve much faster convergence.

Recently, many preconditioning techniques have been developed; see, e.g., [2, 15]
for a review. In this paper, we focus on a sparse approximate inverse technique
based on minimizing the Frobenius norm [6, 7, 11, 12, 13, 14]. Because of the
inherent parallel feature of this technique, it has attracted much attention. Its basic
idea is to construct a sparse nonsingular matrix by the constrained minimization
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problem:

(3) min
M∈℘

‖AM − I‖F ,

where ℘ is a set of sparsity pattern of matrices, ‖.‖F denotes the Frobenius norm
of a matrix, and I denotes the identity matrix. The minimization problem (3) can
be decoupled into n independent linear least squares problems:

(4) min
M∈℘

‖AM − I‖F = min
M∈℘

n∑

j=1

‖Amj − ej‖2,

where mj and ej denote the jth column of M and I, respectively. Thus we can
construct the preconditioner M by solving n independent linear least squares prob-
lems. However, how to choose a ‘good’ sparsity pattern of M that can be effectively
constructed is still challenging. The aim of this paper is to construct a desired pre-
conditioner M for the sparse nonsymmetric system (2), and we will discuss the
construction process in the following sections in detail. Numerical experiments
indicate that this new preconditioner appears more robust and takes less time of
constructing than the popular parallel sparse approximate inverse preconditioner
proposed in [6].

The paper is organized as follows. In Section 2, we briefly describe three basic al-
gorithms for computing approximate solutions of nonsymmetric systems. Then, in
Section 3, we develop a new method to construct the preconditioner we are propos-
ing. Finally, numerical experiments to check this preconditioner’s effectiveness are
presented in Section 4.

2. Approximate Solutions of Nonsymmetric Systems

In this section, we extend the method which was used in [16] for solving SPD
linear systems to general nonsymmetric systems and then modify this method so
that it can be more flexible and effective.

Let A ∈ Rn×n be a general nonsingular matrix. Also, let K and L be two m-
dimensional subspaces of Rn, and x0 ∈ Rn be an initial guess of the solution of
system (1). A projection method is a process which finds an approximate solution
x ∈ Rn of (1) as follows:

(5) Find x ∈ x0 +K such that b−Ax ⊥ L.

Now, let K = span{ei1 , ei2 , ..., eim} and L = AK, where eij is the ijth column of
the identity matrix and m is a small integer. Then problem (5) can be transformed
into the following form:

Find x ∈ x0 + Ey such that r0 −AEy ⊥ L,

i.e., (ETATAE)y = ETAT r0,
(6)

where E = [ei1 , ei2 , ..., eim ], r0 = b− Ax0, and y ∈ Rm.
If we loop (6) and use it to solve the linear systems:

(7) Amj = ej ,

then we define a new approach for solving the systems in (7) as follows:
Algorithm 1 (sparse approximate solution to the system Amj = ej):

1. Choose an initial guess mj and compute r = ej −Amj ;
2. For i = 1 : np,


