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ENERGY STABILITY OF A FIRST ORDER

PARTITIONED METHOD FOR SYSTEMS WITH GENERAL

COUPLING

WILLIAM LAYTON AND AZIZ TAKHIROV

Abstract. We give an energy stability analysis of a first order, 2 step partitioned time dis-

cretization of systems of evolution equations. The method requires only uncoupled solutions of

sub-systems at every time step without iteration, is long time stable and applies to general system
couplings. We give a proof of long time energy stability under a time step restriction relating the

time step to the size of the coupling terms.
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1. Introduction

The most natural approach to numerical simulation of multi-domain, multi-
physics systems is to build a partitioned method for the system from components
optimized for the individual sub-domain and sub-physics problems. The two most
common approaches to partitioning are implicit-explicit methods where the sys-
tem’s’ coupling terms are discretized by explicit methods and sub-domain/sub-
physics terms by implicit methods, and splitting methods where the coupling terms
are themselves separated in each equation according to the subproblems. Appli-
cation of either to complex problems requires analytic foundations as a guide for
practical computation. Herein, we consider the first, implicit-explicit, approach for
general couplings (the main point herein) but restricted to first order, two step
methods. Thus, for a system

d

dt
u1 +A1u1 +B11u1 +B12u2 = f1,

d

dt
u2 +A2u2 +B21u1 +B22u2 = f2,(1.1)

we analyze long-time, energy stability of a method (1.6) below which requires at
each step that the two uncoupled linear systems be solved

(1.2) [I + 24tAi]u
n+1
i = RHS, i = 1, 2.

Thus, we consider methods implicit in A1u1 and A2u2 but explicit in the coupling
terms B11u1 + B12u2 and B21u1 + B22u2. In the method, the diagonal terms
B11u1 and B22u2 could be incorporated into the part treated implicitly (the Ai’s ).
However, the part treated implicitly in (1.3), (1.1) is often determined by existing
codes and the coupling terms are those that remain.

Letting u = (u1, u2)T : [0,∞)→ Rd and A,B represent the d× d block matrices
in (1.1), we develop the stability analysis for

(1.3)
du

dt
+Au+Bu = f, u(0) = u0.
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Let 〈·, ·〉, || · || denote the Euclidean inner product and norm. Suppose

A > 0 i.e., 〈Au, u〉 > 0 for all u ∈ Rd.

Partitioned methods, herein, are useful tools and not best for every circumstance.
The equally useful alternative is a monolithic method where the fully coupled sys-
tem is assembled and solved by some iterative method wherein uncoupling can
occur in the preconditioning step, e.g., [9] for one example. Conservative couplings
(B∗ = −B, where B∗ satisfies 〈Bx, y〉 = 〈x,B∗y〉 ∀x, y ) occur when what is lost
to one domain or variable is transferred to the other. One important example
is the evolutionary Stokes-Darcy model under the Beaver-Joseph-Saffman-Jones
(BJSJ) interface condition, [18], [14], [15], [10], [13], [12]. Dissipative couplings
(B = B∗ > 0) occur when there is energy lost through the interaction of the two
systems. One important example is in atmosphere-ocean couplings under the rigid
lid condition under which there are frictional lossess in transmitting wind energy
at the ocean surface to the ocean ( and vice versa), e.g., [3], [5], [6], [7]. Another
important example of dissipative couplings is compressible flow in a porous medi-
um. The double porosity model of slightly compressible flow in a porous medium
[17] is: find u1(x, t), u2(x, t)

(c1u1)t −
k1c0
µ
4u1 + α−1(u1 − u2) = f,

(c2u2)t −
k2c0
µ
4u2 + α−1(u2 − u1) = g.

The coupling term satisfies

(Bu,u) =

∫
flow domain

α−1(u1 − u2)u1 + α−1(u2 − u1)u2dx

= α−1

∫
flow domain

(u1 − u2)2dx ≥ 0

and is thus dissipative.
One important case where dissipative, conservative and resonant couplings domi-

nated by system dissipation are present is the (above discussed) Stokes-Darcy prob-
lem under the orginal (BJ) Beavers-Joesph condition, studied in [4], [16]. Compared
to the BJSJ condition, extra terms occur which are resonant and must be sufficient-
ly small in the theory developed in these papers. Building on this previous work,
we give combination of these treatments stable for general couplings. The method
we study is related to work in [1], [14] and of implicit-explicit type, e.g., [2], [8]. The
analytical treatments of component discretizations of the coupling terms in (1.3),
(1.1) are known (by a different analytical path for each type of coupling). However,
the analysis of energy stability of their combination presents the technical difficulty
that one discrete evolution equation with all type present requires one analytical
path.

We decompose B = C+P−N (skew symmetric, symmetric positive and symmet-
ric negative parts) and use explicit time discretizations suggested by linear stability
theory for each part. Let

(1.4)

{
B = C + P −N where,

C∗ = −C, P ∗ = P ≥ 0, and N∗ = N ≥ 0.


