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A DIRECTION SPLITTING APPROACH FOR

INCOMPRESSIBLE BRINKMAN FLOW

T. GORNAK, J.L. GUERMOND, O. ILIEV, AND P.D. MINEV

Abstract. The direction splitting approach proposed earlier in [7], aiming at the efficient solution

of Navier-Stokes equations, is extended and adopted here to solve the Navier-Stokes-Brinkman

equations describing incompressible flows in pure fluid and in porous media. The resulting pres-
sure equation is a perturbation of the incompressibility constraint using a direction-wise factorized

operator as proposed in [7]. We prove that this approach is unconditionally stable for the un-

steady Navier-Stokes-Brinkman problem. We also provide numerical illustrations of the method’s
accuracy and efficiency.
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1. Introduction

Flows in highly porous media occur often in industrial and scientific application-
s. Examples are the flows through various filters (air, oil, water filters, etc.), flow
of helium in pebble-bed nuclear reactors, various physiological flows like the flow
in the eye of glaucoma patients, flows in mangrove swamps etc. If the porosity of
the media is high, such flows are usually modelled by the Navier-Stokes-Brinkman
equations. These equations include as limiting cases the Darcy model for the flow
in porous media with a very low porosity, and the Navier-Stokes equations for flows
with infinitely large porosity. As in the case of the classical Navier-Stokes equation-
s, one of the major computational problems for any discretization algorithm is the
imposition of the incompressibility constraint. In the case of unsteady flows proba-
bly the most popular and efficient algorithms for the imposition of incompressibility
are the so-called projection methods. These methods were pioneered by Chorin [4]
and Temam [14]1. For a recent and comprehensive review on projection method-
s the reader is referred to [6]. All projection methods are semi-discretizations of
singular perturbation of the time-dependent Stokes equations where the continuity
equation is perturbed. This perturbation yields a Poisson equation for the pres-
sure or some correction thereof with Neumann boundary condition (L2 projection
onto a divergence-free subspace of the velocity space). The solution of this Poisson
equation can often be a very computationally intensive task. To circumvent this
difficulty [7] proposed to use a perturbation of the continuity equation based on a
direction-wise factorized operator instead of the classical Laplace operator which
allows for the use of a fast tri-diagonal direct solver. In the present article we
extend this approach to the case of incompressible Navier-Stokes-Brinkman flow
and demonstrate numerically that it produces results of the same accuracy as the
classical projection methods. We also prove that if the momentum equation is not
split direction-wise, the resulting algorithm is unconditionally stable.
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1The authors have recently discovered that a similar velocity-pressure decoupling approach

was proposed earlier in the famous article of Harlow and Welch [9] which also proposed the MAC

staggered grid setting for the Stokes problem with free boundaries. Thus, we think some credit
for pioneering the projection methods should be given to this article as well.
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2. The fictitious domain Brinkman equations

Consider the Brinkman equations in a domain Ω̃ ⊂ Rd (d = 2, 3) with a Lipschitz

boundary Γ = ∂Ω̃:

(1)


∂tũ− ν̃∆ũ +∇p̃+

ν̃

k̃
ũ = f̃ in Ω̃× [0, T ],

∇· ũ = 0 in Ω̃× [0, T ],

ũ|∂Ω̃ = 0 in[0, T ], and ũ|t=0 = ũ0 in Ω̃,

where ν̃ is the kinematic viscosity of the fluid and k̃ is the permeability, and T is
the final time moment. In order to use the direction-splitting algorithm proposed
in [7] it is necessary to extend the domain of the problem to a simple rectan-

gle/parallelepiped (in 2D/3D). Let Ω be be such an extension i.e. Ω̃ ⊆ Ω and
consider the following extension of the data

(2) ν = ν̃, in Ω,

(3) f =

{
f̃ , in Ω̃,

0, in Ω \ Ω̃,

(4) u0 =

{
ũ0, in Ω̃,

0, in Ω \ Ω̃,

(5) k(x) =

{
k̃, in Ω̃,

νε, in Ω \ Ω̃,

where 0 < ε << 1 is a penalty parameter used to enforce the boundary conditions
on ∂Ω̃. Then the L2-penalty fictitious domain formulation of the problem in Ω
reads

(6)

∂tuε − ν∆uε +∇pε +
ν

k
uε = f , x ∈ Ω× [0, T ]

∇·uε = 0 in Ω× [0, T ],

uε|∂Ω = 0 in [0, T ], and uε|t=0 = u0 in Ω.

It is well known (see for example [2]) that the following result holds under sufficient
regularity assumptions on the data and the domain:

uε −−−→
ε→0

ũ, in L2(Ω̃×(0, T )).

The order of convergence depends on the regularity of the data and the domain,
but it is at least O(ε1/2).

3. Numerical algorithm

3.1. Time discretization. As we mentioned in the introduction, if the domain of
the problem has a simple shape, it is convenient to perturb the continuity equation

as follows:
d∏

i=1

(I − ∂xixi
)φ = −∇·u/∆t where φ is either the pressure itself (for

first order schemes) or its time increment (for higher order schemes). Therefore,
it would be also convenient to apply the same direction-splitting procedure to the
momentum equation. However, since the permeability is space-dependent, the di-
rection splitting of the momentum equation, in case of an implicit treatment of the
Brinkman term νuε/k, is not straightforward. To understand the problem, let us


