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Abstract. We study the existence, uniqueness and continuous dependence on initial data of the
solution for a Lotka-Volterra cascade model with one basal species and hierarchal predation. A
uniquely solvable, stable, semi-implicit finite-difference scheme is proposed for this system that
converges to the true solution uniformly in a finite interval.
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1. Introduction

In a food web, a species is called basal if it is prey but is not predatory, interme-
diate if it is both prey and predator and top if it is only a predator; the composition
of predator and prey relationships in a food web is referred to as its trophic struc-
ture and individuals levels as trophic levels. We use the word population to mean
abundance or biomass of a species. If we let x(t), y(t) and z(¢) represent the popu-
lations of basal, intermediate and top species respectively in a food web at time ¢,
a sensible model for the trophic structure of a closed food-web population at time

t is a generalized Lotka-Volterra system of the form
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where a,b,...,5 > 0. In this model, the basal species with population x has
intrinsic growth rate a with environmental carrying capacity a/b and the strength
of the effect of predation from the other two species is measured by interaction-term
coefficients ¢ and d. As the top species with population z preys on both the basal
and intermediate species, its interaction terms zz and yz have positive coefficients
since z increases under interaction with each of the other species. The intermediate
species with population y grows through interaction with the basal species but
declines through interaction with the top species.

This system is a special case of the well-known Lotka- Volterra cascade model (cf.
[3]) given by

(1.5) w(t) = zi(t) lei + Y pya;(t)|, i=1,2,....n
j=1
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where x;(t) is the population of species 4, e; is the intrinsic growth or decline rate
of species 7 and p;; is the interaction coefficient between species ¢ and j. The finite-
difference scheme we introduce here for n = 3 applies to predict the population
in the case of only one basal species, so that p1; > 0 and paa = ps3 = 0 in (1.5),
and with hierarchal predation, meaning that each successive species preys on those
below it. This means that in (1.5) species j preys on species i if and only if i < j,
so that p;; < 0if i < j and p;; > 0if ¢ > j.

Although we present a numerical scheme only for the case of a trophic structure
involving one basal and two non-basal species such as rabbits, foxes and wolves, our
scheme can be applied to any geographically limited food web involving one basal
species and any number of non-basal but hierarchal predators. We explain how
this is done Section 3. Additionally, even though we analyze (1.1)-(1.4) specifically
for three individual species, it may be thought of as representing an entire web of
distinct basal species along with multiple species of intermediate and top predators,
as long as no information about interaction between species at the same relative
trophic level is sought.

The method used to discretize (1.1)-(1.4) in Section 3 is reminiscent of nonstan-
dard finite difference schemes as proposed in [4] and [5], as well as in [6], [7] and
[8] in the sense that it is not explicit in time. However, in these references, the
methods proposed seek to find exact schemes that correctly exhibit the geometry
of limit cycles when applied to various differential equations and systems. There it
is demonstrated that a numerical scheme that is chosen semi-implicit in time and
whose time step faithfully mimics the geometry of limit cycles by following certain
rules has impressive numerical results. For an excellent summary of these methods,
see [10].

The numerical method proposed in this paper uses a semi-implicit scheme as
well, but in spirit more closely follows methods presented in [1], [2] and [11]. This
is because we have little a priori global knowledge of the geometry of solutions, so
although we use mixed time steps for the interaction terms of (1.1)-(1.4), this is
done in a way that ensures nonnegativity and stability but still converges uniformly
to the true solution. Therefore, instead of knowing properties of the solution and
laying out a numerical method to match them as presented for a Lotka-Volterra
system in [7], our numerical approach is to use a type of discretization that works
for the system, prove that it converges to the solution of the system, then use these
results to study the true solution.

It seems that there are very few results on the numerical solutions to the system
(1.1)-(1.4) where a discretization is chosen that is shown to have all the desirable
properties of a numerical method.

We organize this paper as follows. In Section 2, we prove the existence, unique-
ness and global boundedness of the solution (z,y,z) of (1.1)-(1.4). In Section 3,
we develop a semi-implicit finite difference scheme for this system and prove that
the difference scheme is stable and the numerical approximation converges to the
solution of (1.1)-(1.4). In Section 4, some numerical experiments are carried out to
study the solution of this system, then finish with some notes on a Hopf bifurcation
that arises at a certain critical value.

2. Existence, Uniqueness and Global Boundedness

In order to get a better analysis for the system, we reduce the number of param-
eters using the nondimensionalization method as in [9] as follows.



