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COMPUTATION OF STATIONARY PULSE SOLUTIONS OF THE

CUBIC-QUINTIC COMPLEX GINZBURG-LANDAU EQUATION

BY A PERTURBATION-INCREMENTAL METHOD

Y.Y. CAO AND K.W. CHUNG

Abstract. Stationary pulse solutions of the cubic-quintic complex Ginzburg-Landau equation
are related to heteroclinic orbits in a three-dimensional dynamical systems and they are usually
obtained using numerical simulation. The harmonic balance method has severe limitation in
computing homoclinic/heteroclinic orbits since the period of such orbits is infinite. In this paper,
we present a perturbation-incremental method to find such stationary pulse solutions. With the

introduction of a nonlinear transformation, perturbed analytical pulse solutions are obtained in
terms of trigonometric functions. Such formulation makes it possible to apply the harmonic
balance method to find accurate approximate solutions of the corresponding heteroclinic orbits
with arbitrary parametric values. Zero-order analytical solutions from the perturbation step and
approximate solutions from the incremental step are compared with that from the bifurcation
package AUTO, and they are in good agreement.
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1. Introduction

The complex Ginzburg–Landau equation (CGLE) has a long history as a generic
amplitude equation derived asymptotically near the onset of instabilities in fluid
dynamical systems. It models the formation of patterns in nonlinear dissipative
media, with important applications in physics and chemistry [26, 1] such as su-
perconductivity, superfluidity, Bose-Einstein condensation to liquid crystals and
strings in field theory [14, 7, 19, 3, 8, 23]. It comes from the nonlinear Schrödinger
equation with the inclusion of the growth and damping terms. A rich variety of
behavior such as self-replicating [21, 11] and elastic behavior upon collision [13, 27]
are observed from its coherent structures such as pulses and holes. For the cubic
CGLE, exact stationary Pereira-Stenflo soliton was obtained in [22] for arbitrary
growth and damping strength. It has also a one-parameter family of exact travel-
ing Nozaki-Bekki holes [20, 24] which are structurally unstable. The cubic-quintic
CGLE is known to admit stable coherent structures as a consequence of the coex-
istence between a stable limit cycle and a stable fixed point and its nonvariational
nature. Exact solutions are available only when the system parameters of the
cubic-quintic CGLE satisfy certain conditions. To investigate the behavior and
bifurcation of coherent structure for arbitrary parametric values, numerical simula-
tion or continuation starting from an exact solution is usually employed [10, 28, 17].
However, continuation based on the harmonic balance (HB) method using Fourier
series has not been employed to study coherent structures of the CGLE although
the HB method is an efficient technique in computing limit cycles of dynamical
systems [15, 16, 18, 12]. It is due to the fact that exact solutions of CGLE are
usually expressed in terms of Jacobi elliptic functions or hyperbolic functions.
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On the other hand, coherent structures of the CGLE are related to homoclin-
ic/heteroclinic orbits of a three-dimensional system of ordinary differential equa-
tions. For small perturbation, Belhaq et al [2] applied the elliptic Lindstedt-
Poincaré method to determine an approximation of the limit cycles near homo-
clinicity. They imposed a criterion based on a collision between limit cycles with
large period and the saddle point. Chen & Chen [5] presented a hyperbolic per-
turbation method using similar collision criterion. For large parametric values, the
HB method has severe limitation in computing homoclinic/heteroclinic orbits since
the period of such orbits is infinite. In numerical computation, not only it requires
a large number of harmonic terms but also the error is rather significant [29].

In [9], Descalzi proposed an analytical method which consisted of calculating
localized solutions inside and outside the core and then to match the approximate
solutions at the border of the regions, imposing there continuity of the amplitude,
the phase, and the derivative of the amplitude. The method is able to predict the
range of existence of local structures. However, the bifurcation curve obtained from
the above method has obvious deviation from that using the bifurcation package
AUTO.

The present study is motivated from the above situation. Recently, we proposed a
novel construction of homoclinic/heteroclinic orbits for planar nonlinear oscillators
using a nonlinear time transformation [4]. Even for large parametric values, only
a few harmonic terms can achieve high accuracy. In [6], the novel construction
is applied to find exact front, pulse and hole solutions for a two-dimensional cubic
CGLE in terms of Fourier series. An advantage of this formulation is that perturbed
analytical solution can be obtained near an exact solution. Continuation based on
the HB method becomes possible in finding and analyzing coherent structures of
the cubic-quintic CGLE for arbitrary parametric values.

The paper is organized as follows. In Section 2, exact stationary pulse and hole
solutions of the cubic CGLE are obtained in terms of trigonometric functions by
using a nonlinear time transformation. Such transformation is applied in Section 3
to find perturbed analytical pulse solutions of the cubic-quintic CGLE from which
the range of existence of pulses can be predicted. In Section 4, a continuation
procedure based on the HB method is proposed to compute pulse solutions for ar-
bitrary parametric values, which are compared with that from AUTO. A conclusion
is given in Section 5.

2. Stationary coherent structure of the cubic CGLE

In this section, we first consider the cubic CGLE in the following form

(1) ∂tA = µA+ β|A|2A+D∂xxA.

We are going to find exact stationary pulse and hole solutions of (1) using the
nonlinear transform ϕ introduced in [4], and compare with those from current
literature. Suppose the ansatz

(2) A = ei(θ(ξ)+ωt)u(ξ),

where θ(ξ) and u(ξ) are real functions with ξ = x − vt. Substituting (2) into (1)
and after simplification, we obtain

(3a) uξξ − uΨ2 + vD1uξ + vD2uΨ+ µ1u+ β1u
3 = 0,

(3b) 2uξΨ+ uΨξ + vD1uΨ− vD2uξ − µ2u+ β2u
3 = 0,


