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A MESH ADAPTATION METHOD FOR
1D-BOUNDARY LAYER PROBLEMS

ANDRÉ FORTIN, JOSÉ M. URQUIZA, AND RICHARD BOIS

Abstract. We present a one-dimensional version of a general mesh adaptation technique de-
veloped in [1, 2] which is valid for two and three-dimensional problems. The simplicity of the
one-dimensional case allows to detail all the necessary steps with very simple computations. We
show how the error can be estimated on a piecewise finite element of degree k and how this in-
formation can be used to modify the grid using local mesh operations: element division, node
elimination and node displacement. Finally, we apply the whole strategy to many challenging
singularly perturbed boundary value problems where the one-dimensional setting allows to push
the adaptation method to its limits.
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1. Introduction

Adaptive numerical methods have now a long history in efficiently computing
approximations to ordinary or partial differential equations. Their goal is to reach
a given level of precision at a minimal cost which often means a minimal number of
degrees of freedom (DOFs). This also results in minimizing the size of the result-
ing algebraic systems of equations to be solved. In the case of partial differential
equations (PDEs) and the finite element method – one of the most important ap-
proximation methods for PDEs – the two key ingredients are an a posteriori error
estimator and a mesh adaptation procedure. The adaptation method uses the in-
formation from the error estimator to modify the mesh in order to reach the desired
error level. For each of these two steps, there exist a large variety of possibilities.
Our goal here is not to review all or even several of these methods and we refer the
interested reader to [3, 4, 5, 6, 7] for starting points.

In this paper, we present a one-dimensional version of a general technique de-
veloped in [1, 2] for two and three-dimensional problems. The presented method
does not depend on the PDE itself (unlike some other error estimations, based on
residuals, as in [8]) and can be applied to finite element solutions of any degree.

The adaptation method is based on an error estimator that can be easily calcu-
lated on each element. As we shall see, our error estimator has a nice interpretation
linking the finite element error to the classical Lagrange interpolation error. Once
the error has been estimated, local operations are used to modify the mesh: ele-
ment division, node elimination and node displacement. This indirectly means that
the node positions are also unknown and must therefore be determined through an
iterative method.

The first main goal of the present paper is to take advantage of the one-dimensional
setting to give all the details of the adaptive strategy: the explicit construction of
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the error estimator, the computation of the local errors on a patch of adjacent el-
ements and the decision process for the local mesh modifying operations. This is
done for two-point boundary value problems.

The second main goal is to illustrate the efficiency of the method through a
variety of problems, some of them having proved to be particularly challenging
steady convection-diffusion-reaction equations. When the diffusion coefficient is
small compared to the convection velocity, solutions present steep variations lo-
calized in so-called boundary layers. Finite element approximations then present
unphysical oscillations in these regions unless the mesh size is very small and thus
the resulting algebraic system to be solved is considerably large. Part of this prob-
lem can be circumvented by modifying the variational formulation and adding sta-
bilization terms but oscillations may remain or overshooting (or undershooting)
phenomena may appear. In [9], stabilization methods are combined with graded
meshes adapted to the solution to improve the numerical solution but using such
hand-tailored meshes necessitates a precise knowledge of the solution. This is highly
unrealistic for more general applications such as fluid flow problems in several space
dimensions. In our numerical examples, we show that the automatic adaptation
strategy presented here, which does not use an a priori knowledge of the solution
(nor of the PDEs being solved) compares favorably with these hand-made meshes.
Finally, we also test our strategy for approximating solutions presenting disconti-
nuities, an even more challenging problem.

The major advantage of the one-dimensional case is that it can be pushed to the
limit without unduly increasing the computational burden. As we shall see in the
numerical results, we end up with elements of length as small as 10−11 in a unit
domain. This would hardly be possible in 2D and even less in 3D.

This article is organized as follows. In Section 2 we introduce the one-dimensional
convection-diffusion equation and its standard Galerkin and stabilized Petrov-Galerkin
formulations. The error estimator and its interpretation as an interpolation error
are presented in details in Section 3. In Section 4, each step and the whole method-
ology of the adaptation strategy is presented in the one-dimensional setting. In
Section 5 we present our numerical tests, which compare our mesh adaptation
strategy to uniform meshes or to hand-made graded meshes for convection-diffusion
problems presenting boundary layers or even discontinuous solutions.

2. Position of the problem

As a test problem, we consider the classical convection-diffusion-reaction equa-
tion of the general form

(1) − d

dx

(
d(x)

du

dx
(x)

)
+ b(x)

du

dx
(x) + c(x)u(x) = f(x)

on the domain Ω = [α, β] with Dirichlet boundary conditions u(α) = uα and u(β) =
uβ . More general boundary conditions can also be considered. Convection-diffusion
problems have been studied for a long time since it is well known that standard
Galerkin finite element formulations (or centered finite differences) are unable to
produce appropriate solutions when advection is dominant, unless very fine meshes
are used. Some form of stabilization is needed, such as the Streamline-Upwind-
Petrov-Galerkin (SUPG) formulation which goes back to the work of Hughes and
Brooks [10, 11].

We will solve equation (1) by the finite element method. This requires a mesh
Th which is a partition of the interval [α, β] with N elements denoted K = [xi, xi+1]
with length hK = xi+1 − xi. Let Vh the space of Lagrange continuous functions


