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A COMPARATIVE STUDY OF THE EFFICIENCY OF JET SCHEMES
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SEIBOLD

Abstract. We present two versions of third order accurate jet schemes, which achieve high order accuracy by

tracking derivative information of the solution along characteristic curves. For a benchmark linear advection
problem, the efficiency of jet schemes is compared with WENO and Discontinuous Galerkin methods of the same

order. Moreover, the performance of various schemes in tracking solution contours is investigated. It is demonstrated

that jet schemes possess the simplicity and speed of WENO schemes, while showing several of the advantages as
well as the accuracy of DG methods.
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1. Introduction

The advection of field quantities under a velocity field is an important sub-problem in many
computational projects. Examples are the passive transport of concentrations, or the movement
of interfaces using level set approaches [13]. We consider the linear advection equation

(1) φt + ~v · ∇φ = 0 ,

which moves a scalar quantity φ(~x, t) by a given velocity field ~v(~x, t). Equation (1) is augmented
with initial conditions φ(~x, 0) = Φ(~x) and boundary conditions. All data is assumed smooth in
space and time. Furthermore, it is assumed that the problem at hand can be described by, or
embedded into, a rectangular computational domain, equipped with a regular grid.

High order accurate numerical approximations of (1) on a fixed grid are commonly based on
schemes that employ polynomials of sufficient degree to interpolate smooth solutions with the
required accuracy. One popular type of approach are finite difference ENO [16] or WENO [11]
methods. These store approximations of the solution values at the grid points, and achieve a
high order polynomial approximation by considering local neighborhoods that are several grid
points wide. Another type of approach are discontinuous Galerkin (DG) [14, 4, 5] methods. These
achieve high order accuracy by storing a high degree polynomial approximation in each grid cell,
and approximating the flux through cell boundaries based on a weak formulation of (1). Both
WENO and DG methods are based on a semi-discretization of (1), and achieve high accuracy in
time by using strong stability preserving (SSP) Runge-Kutta schemes [16, 6, 7].

Both types of approaches incur problems and difficulties. Due to the wide stencils of WENO
methods, it is challenging to preserve high order near boundaries. Furthermore, their non-locality
poses difficulties for an effective parallelization, and their use in conjunction with adaptive grid ap-
proaches [2]. In contrast, in DG methods, communication is limited to neighboring cells. However,
DG approaches are characterized by costly quadratures over grid cells and their edges, significant
time step restrictions, and non-trivial implementation aspects.

A new class of approaches for (1), so called jet schemes, has been proposed recently [12, 15]. The
goal of these methods is to provide an attractive compromise between WENO and DG methods,
possessing the optimal locality and good resolution properties of DG, while being close to the
computational efficiency and ease of implementation of WENO schemes. In this paper we conduct
a comparative study of the efficiency and accuracy of this new class of methods. We consider two
versions of third order accurate jet schemes, and compare them with WENO and DG methods
of the same order. The considered jet schemes are described in Sect. 2. Then, in Sect. 3, DG
methods are outlined, and in Sect. 4, information about the WENO schemes that we employ is
given. Sect. 5 shows the numerical results obtained when applying the three types of approaches to
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two versions of a benchmark problem. In Sect. 6, a discussion of the observations and theoretical
estimates of the computational cost are given.

2. Jet Schemes

Jet schemes are based on an advect–and–project approach in function spaces. Given an ap-
proximation to the solution of (1) at time tn, an approximate solution at time tn+1 = tn + ∆t is
obtained by the time step

φn+1 = P ◦Atn+1,tnφ
n .

Here Atn+1,tn is an approximate advection operator, defined by evolving the solution along char-
acteristics using a numerical ODE solver, and P is a projection operator, given by a piecewise
Hermite interpolation based on parts of the jet of the solution at the points of a cartesian grid.
The fact that the projection requires data only at grid points allows to use this approach as a
numerical scheme: when evaluating the advection operator, only the characteristic curves that
go through grid points at tn+1 need to be considered. In addition, the evolution of derivatives
of the solution along these characteristic must be found. As outlined below, the required spacial
derivatives of the advection operator can be found by analytical differentiation (Sect. 2.3) or by
approximations based on tracking multiple nearby characteristics (Sect. 2.5).

Jet schemes can be constructed in any space dimension, and for any order of accuracy [15].
For simplicity, here we only describe third order schemes in two space dimensions. We consider a
rectangular computational domain Ω ⊂ R2, equipped with a regular cartesian grid of grid size h.

2.1. Projection. In a grid cell [a, a+ h]× [b, b+ h] ⊂ Ω, let the vertices be indexed by a vector
~q ∈ {0, 1}2, such that the vertex of index ~q is at position ~x~q = (a + h q1, b + h q2). On each of

the four vertices, let a vector of data be given by φ~q~α ∀ ~α ∈ {0, 1}2. The data represents partial
derivatives of orders up to 1 in each variable, as follows: ~α = (0, 0) represents function values
φ; ~α = (1, 0) and ~α = (0, 1) represent first derivatives ∂xφ and ∂yφ, respectively; and ~α = (1, 1)
represents ∂xyφ. This data is interpolated by the bi-cubic polynomial

(2) H(~x) =
∑

~q,~α∈{0,1}p
φ~q~α W

~q
~α(~x) ,

where the W ~q
~α(~x) are bi-cubic basis functions, given by the tensor product formulas

W ~q
~α(~x) = hα1+α2 wq1α1

(
x−a
h

)
wq2α2

(
y−b
h

)
,

and the wqα are the univariate basis functions

w0
0(x) = 1− 3x2 + 2x3, w1

0(x) = 3x2 − 2x3, w0
1(x) = x− 2x2 + x3, w1

1(x) = −x2 + x3.

The bi-cubic interpolant (2) is an O(h4) accurate approximation to any sufficiently smooth function
φ that it interpolates on a cell of size h [15].

On the computational domain Ω ⊂ R2, let the grid points be labeled ~x~m, where ~m ∈ Z2. For
any (sufficiently smooth) function φ : Ω → R, we define a global interpolant Hφ as follows: at
each grid point ~x~m, evaluate the derivatives of φ, ∂xφ, ∂yφ, and ∂xyφ, to produce a data vector

φ~m~α ∀ ~α ∈ {0, 1}2. Then, on each grid cell, use this data to define the bi-cubic interpolant (2). In
the function space

S2,+ = {ψ ∈ C1 : ψ twice differentiable a.e. with D2ψ ∈ L∞} ,
this procedure can be applied using the following convention: whenever ∂xyψ must be evaluated
at a point at which D2ψ is not defined in the classical sense, we define it as

∂xyψ(~x~m) = 1
2

(
ess lim sup

~x→~x~m
∂xyψ(~x) + ess lim inf

~x→~x~m
∂xyψ(~x)

)
.

The view on the general order of approximation case [15] reveals the rationale for the notation S2,+.
Clearly, the re-application of the interpolation procedure does not change the result: HHφ = Hφ.

Hence, in the space S2,+ it can be formulated as a projection operator

(3) Pφ = Hφ .


