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PASSAGE OF HIGH-FREQUENCY SIGNALS THROUGH POWER

TRANSFORMERS.

A. A. LACEY

Abstract. We consider the possibility of passing high-frequency signals past power transformers
forming part of an electrical grid. We first model a transformer, including its laminated core, to
obtain asymptotic behaviour of currents and voltages in the secondary circuit. Having got this
we are able to determine the effects of different by-pass mechanisms which might be tried to get
the high-frequency signal from the primary to the secondary circuit.
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1. Introduction

A possible cheap method – hopefully requiring little extra hardware and wiring
– of transferring data between, on the one hand, individual consumers of electricity,
and on the other, one central data-processing/interrogation point, is to transmit
a high-frequency signal along power lines. Unfortunately, there are a number of
barriers to such a signal, in the form of transformers used to step down the voltage
of the power supply. The transformers used for reducing the voltages utilised by the
main transmission lines are not a major problem, as there are relatively few of them
and installing special equipment to get high-frequency signals past them might be
commercially viable. However, there are many more transformers employed in local
sub-stations so a cheap and simple way of ensuring signals get past these is needed,
if the technique is to be economical.

We start, in Section 2, by looking at basic electromagnetic theory applying in
a power or distribution transformer. In particular, we see one reason why it is
observed, [3], [9], [10], [22], that at “low” frequencies it is seen that power loss by
the transformer (power input into the primary winding less power output by the
secondary coil) is small, order of frequency squared, while for “high” frequencies
there is higher power loss, of order one, and power output decaying as a power of
frequency. To get the correct sizes of losses, the laminated structure of the trans-
former’s magnetic core must be modelled. Typically, the core consists of alternating
layers of a conducting ferro-magnetic and an insulating non-magnetic material. The
width of the layers is order 0.4 mm, compared with a macroscopic length scale of
1 m. This means that averaged equations can be derived. In building our model we
take, for simplicity, the ferro-magnetic core to behave as a simple material so that
magnetic induction is proportional to magnetic field; non-linear behaviour, such as
saturation, hysteresis and kinetic effects are all disregarded. Note that power losses
discussed in the present paper result largely from eddy currents alone. (It should
be noted, however, that in practice hysteresis produces most of the power losses,
[18].) We see that the laminated structure of the core keeps (as is well known)
power losses due to eddy currents low at a normal mains frequency of 50 Hz, but
there is a large power loss at the desired frequency of the signal.
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The main treatment of the laminated core is based on homogenisation, using
the method of multiple-scales (see, for example, [8]), to obtain an averaged model
for this particular structure. This particular problem seems not to have been fully
solved in the substantial literature on homogenisation, much of it rigorous, see [19]
and [20] for quite general problems, and [1], [2], [4], [5], [6], [11], [12], [17], [21]
which consider electro-magnetic fields in various types of heterogeneous media. Of
particular note are [13], which looks at layered materials, one of which is a perfect
insulator, and [7], which discusses the relationship between the small size of included
materials and other small parameters which can appear in particular problems. In
the case of present interest, we shall be concerned with the balances between small
layer size and high frequency of the electric currents. Other limiting parameters
which arise briefly in this work are the high ratios of electrical conductivities and of
magnetic permeabilities between the insulating and the ferro-magnetic materials.

Section 2 re-derives, using the method of multiple scales, the fast and slow spatial
dependencies of the electromagnetic field, found in [13], in a distinguished limit
of thin layers and high ratio of conductivities. Extending what has been done
previously done in the literature, we then use these results to obtain the inductances
for transformers for various limiting cases of interest.

In Section 3 we use the results of the internal modelling in considering the current
flow when a power supply is connected to the primary coil and a load is connected
to the secondary. It is clear that, without any extra device linking the two sides
of the transformer, there is negligible transmission of any high-frequency electro-
magnetic signal across the transformer. Connecting some sort of impedance (in the
simplest cases, just a resistor, capacitor or inductor) across the transformer to link
the primary and secondary circuits in such a way as not to change the performance
at low, mains, frequencies, is seen not to significantly enhance the transmission of
high frequencies.

The possible changed internal behaviour of the transformer windings at high
frequencies is briefly looked at in the Discussion, Section 4.

2. Modelling the Magnetic Core

2.1. Basic Case. We start by considering a single piece of iron or steel, sur-
rounded by an air (or other insulating) gap, which in turn is surrounded by a layer
carrying an electric current. This surface current density represents the current
being carried by the wires in the coil. For simplicity a two-dimensional situation,
as in Fig. 1, is taken. With this simplified geometry, the electric field lies in the x1

– x2 plane, while the magnetic field is in the normal, x3, direction. We can then
write E = (E1, E2, 0) = E(x1, x2, t) for the electric field and represent the magnetic
induction B = (0, 0, B) by the scalar quantity B(x1, x2, t). Maxwell’s equations,
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as the last of (2.1) automatically holds, the third is not used, and we can neglect the
ǫ ∂E/∂t term for frequencies much less than 1/(w

√
ǫ0µ0) = O(3 × 108 s−1). Note


