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COALESCENCE CUBIC SPLINE FRACTAL

INTERPOLATION SURFACES

ARYA KUMAR BEDABRATA CHAND

Abstract. Fractal geometry provides a new insight to the approximation and modelling of
scientific data.This paper presents the construction of coalescence cubic spline fractal interpolation
surfaces over a rectangular grid D through the corresponding univariate basis of coalescence cubic
fractal splines of Type-I or Type-II. Coalescence cubic spline fractal surfaces are self-affine or non-
self-affine in nature depending on the iterated function systems parameters of these univariate
fractal splines. Upper bounds of L∞-norm of the errors between between a coalescence cubic
spline fractal surface and an original function f ∈ C4[D], and their derivatives are deduced.
Finally, the effects of free variables, constrained free variables and hidden variables are discussed
for coalescence cubic spline fractal interpolation surfaces through suitably chosen examples.
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1. Introduction

The theory of fractal interpolation has become a powerful tool in applied sci-
ence and engineering since Barnsley [1] introduced fractal interpolation function
(FIF) using the theory of iterated function system (IFS). The attractor of an IFS
is the graph of a FIF that interpolates a given set of data points. Fractal interpola-
tion constitutes an advance in techniques of approximation in the sense that these
functions used are not necessarily differentiable, and show the rough aspect of real-
world signals [2–4]. For smooth curve approximation through fractal methodology,
Barnsley and Harrington [5] initiated the construction of a differentiable FIF or
Cr-FIF f that interpolates the prescribed data if values of f (k), k = 1, 2, . . . , r, are
assigned at the initial end point of the interval. Fractal splines with general bound-
ary conditions are studied recently [6, 7]. The power of fractal methodology allows
us to generalize almost any other interpolation techniques, see for instance [8, 9].

Fractal surfaces are proved to be useful to approximate various type of surfaces in
material science, ocean engineering, geology, chemistry, physics, image processing
and computer graphics. Massopust [10] was first to put forward the construction of
fractal interpolation surfaces (FISs) wherein he assumed the surface as triangular
simplex and interpolation points on the boundary to be co-planar. In view of lack
of flexibility in this construction, Geronimo and Hardin [11] and Zhao [12] have gen-
eralized the construction of FIS by allowing more general boundary data. Xie and
Sun [13] constructed bivariate FIS on rectangular grids with arbitrary contraction
factors and without any condition on boundary points. Dalla [14] extemporised
this construction by using collinear boundary points and demonstrated that the at-
tractor is a continuous FIS. Further research and developments on FISs in various
directions are discussed by Massopust [15], Bouboulis, et al. [16, 17], Chand and
Navascués [18] , Metzler and Yunb [19]. However, all the constructions mentioned
above lead to self-affine fractal surfaces.
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The term ‘hidden variable’ was introduced by Barnsley et al. [20] and Masso-
pust [21]. A hidden variable FIF (HFIF) is more diverse, appealing and irregular
than a FIF for the same set of interpolation data as functional values of a HFIF con-
tinuously depend on all the defining IFS parameters. Since a HFIF is the projection
of a vector valued function, it is usually non-self-affine in nature. Bouboulis and
Dalla [22] have constructed hidden variable vector valued FIFs on random grids
in R

2. Chand and Kapoor [23] have introduced the coalescence hidden variable
FIF and studied their stability analysis [24]. A non-diagonal IFS that generates
both self-affine and non-self-affine FIS simultaneously, depending on the free vari-
ables and constrained variables on a general set of interpolation data is constructed
in [25]. The attractor of such an IFS is called the coalescence hidden-variable frac-
tal interpolation surface (CHFIS). A CHFIS is a preferred choice for the study
of highly uneven surfaces such as clouds, sea surfaces, surfaces of rocks, tsunami
waves, etc. The quantification of smoothness of such surfaces in terms of Lipschitz
exponent of its corresponding CHFIS is investigated recently in [26]. This paper
aims to develop the theory of coalescence cubic spline FISs (CCFISs), to study their
convergence results, and to validate the effects of IFS parameters on the shape of
a CCFIS.

In Section 2, we discuss basics of coalescence hidden variable FIFs (CHFIFs),
construction of cubic spline CHFIFs and cardinal cubic CHFIFs. An estimate of
the error bound of the cubic spline CHFIF with the original function is obtained
in this section. The construction of CCFISs is carried out in Section 3 through
tensor product of cardinal cubic spline CHFIFs of Type-I or Type-II. Upper bounds
of L∞-norm of the errors between a cubic spline CHFIF and the original function
f ∈ C4[D], and their derivatives are deduced in Section 4. Finally, the effects of IFS
parameters on a CCFIS are illustrated through various suitably chosen examples.

2. Cubic Spline CHFIFs

We discuss the basics of CHFIFs through IFS theory in Section 2.1. The con-
struction of cubic spline CHFIFs and cardinal cubic spline CHFIFs of Type-I or
Type-II are described respectively in Section 2.2 and Section 2.3. Upper bounds
of L∞-norm of the errors between a cubic spline CHFIF and an original function,
and their derivatives are estimated in Section 2.4.

2.1. Basics of CHFIFs. Let ∆t : t0 < t1 < · · · < tN be a partition of an
interval I = [t0, tN ] ⊂ R and {(tj, xj) ∈ I × R : j = 0, 1, 2, . . . , N} be a set of
interpolation data points. This data set is extended to a generalized set of data
{(tj, xj , ξj) ∈ R

3 : j = 0, 1, 2, . . . , N} with real parameters ξj , j = 0, 1, 2, . . . , N .
Let Lj : I −→ Ij = [tj−1, tj ] be a contraction map satisfying

(2.1) Lj(t0) = tj−1, Lj(tN ) = tj for j = 1, 2, . . . , N.

Let Fj : I × R
2 −→ R

2 be a vector valued function satisfying

(2.2)

{

Fj(t0, x0, ξ0) = (xj−1, ξj−1), Fj(tN , xN , ξN ) = (xj , ξj),

d(Fj(t, x, ξ), Fj(t
∗, x∗, ξ∗)) ≤ τjdE((x, ξ), (x

∗, ξ∗)),

for j = 1, 2, . . . , N, where (t, x, ξ), (t∗, x∗, ξ∗) ∈ I × R
2, 0 ≤ τj < 1, d is the sup.

metric on I×R
2, and dE is the Euclidean metric on R

2. In order to define a CHFIF,
functions Lj and Fj are chosen such that Lj(t) = ajt+ bj and

(2.3) Fj(t, x, ξ) = Aj(x, ξ)
T + (pj(t), qj(t))

T ≡ (F 1
j (t, x, ξ), F

2
j (t, ξ))

T ,


