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SIMULATION OF CEREBRAL INFUSION TESTS USING A

POROELASTIC MODEL

IAN SOBEY, ALMUT EISENTRÄGER, BENEDIKT WIRTH, AND MAREK CZOSNYKA

Abstract. In an infusion test the apparent rate of cerebrospinal fluid (CSF) production is
temporarily increased through injection of fluid directly into the CSF system with the result that
CSF pressure rises, in theory to a new plateau average, and the change in pressure level gives a
measure of resistance to CSF outflow and the rate of approach to the plateau gives information
about cerebral compliance. In the first part of this paper we give details of a two-fluid (blood and
CSF) spherically symmetric poroelastic model that can simulate an infusion test which includes
oscillations in blood pressure. This model has been applied to clinical data where the infusion
rate and arterial blood pressure are input and an oscillatory CSF pressure is computed along with
spatial parenchyma displacement, strain and local changes in CSF content. In the later part of this
paper, the poroelastic model is simplified by spatial integration resulting in a one-compartment
model that includes blood pressure oscillations but which, when they are ignored, reduces to a
well known one-compartment model. When the arterial pressure pulsations are included, their
interaction with a non-linear compliance results in solutions that have to be interpreted very
carefully to predict parameter values.
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1. Introduction

The infusion test can be used to aid interpretation of CSF function: for a short
period of time the rate of CSF production is increased and the change in CSF
pressure is measured. Usually the time average value rises to a new plateau value,
the rate of rise giving information about the cerebral compliance and the plateau
value showing the resistance to CSF absorption, two important clincial indicators
of CSF function. The simplest interpretation of this test assumes that the CSF
is contained in a single compliant compartment so that the pressure variation is
described by a first order ODE in time with CSF production as input parameter.
Such models do not take arterial pressure fluctutation into account and the CSF
pressure calculated, while slowly varying in time, does not fluctuate on the scale of
arterial pressure pulsations, see for example [8] for a review of such models.

In a series of papers ([9], [10], [13]) a poroelastic model was developed for predict-
ing changes in cerbrospinal fluid pressure in a number of situations, originally for
obstructive hydrocephalus and then extended to some time dependent situations.
The original model was based on a long time scale so fluctuations in arterial pres-
sure were neglected, indeed that model considered the brain only as a two-phase
material with a porous elastic phase through which CSF could move and where
changes in CSF pressure (intracranial pressure, ICP) were coupled to changes in
stress and strain in the elastic phase. In a more recent paper, [15], a mathematical
model was developed that included multiple fluid phases, in individual compart-
ments, separated from each other and where CSF was one of the fluids. Here we
develop that model for two fluid compartments, retaining a continuum hypothesis
and treating the brain as having three compartments or phases: a porous elastic
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compartment, a CSF compartment and a single blood compartment. There is no
exchange of fluid between the CSF and blood compartments. Both the elastic and
CSF compartments have spatial, as well as temporal, dependence. The model re-
tains spherical symmetry and so is the simplest spatially varying complete model
for ICP fluctuations, complete in the sense that the model can be used to simulate
changes in ICP in for example, an infusion test. However the spatial dependence
means that the model is time consuming to solve numerically. In this paper we set
out the spatially varying model and then derive from that model, a spatially aver-
aged model that while still requiring numerical solution, can be integrated rapidly.

2. Spatially varying model

2.1. Biot’s theory of poroelastic deformation. In order to derive a three-
phase poroelastic model for the brain we begin by briefly reviewing the theory of [2],
particularly using the notation described in [11] (see pp17-21 therein). For a fluid-
filled, porous, solid matrix, Biot supposed a continuum description with a strain
ε, overall stress σ, fluid pressure p, and an additional variable ζ, the increment in
fluid content per volume element. Assuming a physical state to be locally described
by pressure and stress and linearising the relations between ε, σ, p, ζ gives that

ε = a11σ + a12p,(2.1)

ζ = a21σ + a22p.(2.2)

Furthermore, Biot assumed the existence of an energy density

(2.3) U = σε+ ζp,

so that the condition ∂2U
∂ζ∂ε = ∂2U

∂ε∂ζ , implies a12 = a21. Letting a11 = 1/K, where K

is the bulk modulus of the elastic phase, a12 = a21 = α/K, with α the Biot–Willis
parameter, and a22 = α/(βK), with β Skempton’s coefficient, gives on rearranging
(2.1) and (2.2),

(2.4) σ = Kε− αp,

(2.5) ζ = αε+
α(1 − αβ)

βK
p.

The system is completed by assuming that the strain is a result of a displacement
u and that fluid flow through the porous matrix obeys a Darcy flow model so that
the balance of momentum and the conservation of fluid give, if u is the matrix
displacement (and neglecting acceleration of fluid through the matrix),

(2.6) ρ
∂2u

∂t2
= ∇ · σ,

(2.7)
∂ζ

∂t
= ∇ ·

k

µ
∇p,

where ρ is the density of the solid-fluid continuum, k is a permeability, and µ the
fluid viscosity. In the model of the brain used in [9], [10], [13], the solid matrix
represented the brain parenchyma and the fluid the CSF. In these models, the
time scale was long enough that the left hand side of both these equations was
neglected, and the time dependence only entered the model in a quasi-stationary
manner through a boundary condition that expressed conservation of CSF.


