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DYNAMIC INSTABILITY OF STATIONARY SOLUTIONS TO

THE NONLINEAR VLASOV EQUATIONS

SUN-HO CHOI AND SEUNG-YEAL HA

Abstract. We present the dynamic instability of smooth compactly supported stationary solu-
tions to the nonlinear Vlasov equations with self-consistent attractive forces. For this, we explicitly
construct a one-parameter family of perturbed solutions via the method of the Galilean boost.
Initially, these perturbations can be close to the given stationary solution as much as possible in

any Lp-norm, p ∈ [1,∞], and have the same local mass density profile as a stationary solution, but
a different bulk velocity profile. At the macroscopic level, these perturbations correspond to the
traveling waves with compact supports. However in finite-time, the phase-space supports of these
perturbations will be disjoint from the support of the given stationary solution. This establishes
the dynamic instability of stationary solutions in any Lp-norm.
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1. Introduction

The purpose of this paper is to present a dynamic instability of smooth Lp-
stationary waves to nonlinear Vlasov equations with radially symmetric force poten-
tial. Consider an ensemble of many interacting particles through a self-consistent
attractive conservative force. For definiteness, we assume that the force poten-
tial U is generated collectively by the convolution between the local mass density
ρ = ρ(x, t) and a spherically symmetric kernel K = K(|x|). Let f = f(x, v, t) be a
one-particle distribution function at the phase-coordinate (x, v) ∈ R

6 at time t ≥ 0.
The spatial-temporal evolution of the distribution function f is governed by the
self-consistent nonlinear Vlasov equation:

∂tf + v · ∇xf −∇xU · ∇vf = 0, x, v ∈ R
3, t > 0,

U = K ∗x ρ, ρ =

∫

R3

fdv,
(1.1)

subject to initial datum:

(1.2) f(x, v, 0) = f in(x, v).

The prototypical examples of (1.1) are the Vlasov-Poisson(in short V-P) system and
the Vlasov-Yukawa(V-Y) system. The nonlinear Vlasov equations have many phys-
ical and engineering applications in the modeling of an electron gun, plasma sheath
and galaxies as a large ensemble of stars in plasma physics and astrophysics [4, 16].
The Cauchy problem for (1.1) can be treated via the Bardos-Degond approach [1]
for small data, Pffaffelmoser’s characteristic method [18] and Lions-Perthame’s ve-
locity moment arguments [17] for large data. For many interesting issues on the
weak solutions, stability and dispersion estimates, we refer to a recent survey article
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[19].

We next briefly discuss main motivation of this work. In [5], Chae and Ha in-
vestigated the uniform L1-stability of the V-P system using the dispersion estimate
and Gronwall’s estimate in the class of Bardos-Degond solutions. More precisely,
for any two small and decaying smooth solutions f and g with corresponding initial
data f in and gin , they derived a Growl’s inequality for ||f(t)− g(t)||L1(R2d):

||f(t)− g(t)||L1(R2d)

≤ ||f in − gin ||L1(R2d) + C

∫ t

0

(1 + s)−(d−2)||f(s)− g(s)||L1(R2d)ds.
(1.3)

Note that for a high dimension with d ≥ 4, the time-factor (1 + s)−(d−2) inside the
integrand is integrable, hence the relation (1.3) results in the uniform L1-stability
with respect to initial data:

(1.4) ||f(t)− g(t)||L1(R2d) ≤ C||f in − gin ||L1(R2d), t ≥ 0,

where the positive constant C appearing in R.H.S. is independent of t. However
for d = 3, we have a non-integrable factor (1 + s)−1 in (1.3). Hence we have

(1.5) ||f(t)− g(t)||L1(R6) ≤ (1 + t)C ||f in − gin ||L1(R6).

Therefore the direct stability estimate based on the dispersion estimate and Gron-
wall’s inequality is inconclusive for the uniform L1-stability (1.4) in physically inter-
esting three dimensions. It still remains as an interesting open problem. Recently
authors obtained a negative clue for the possible scenario on the uniform L1-stability
of the V-P system in three dimensions, in particular, they showed that the non-
existence of the asymptotic completeness for the V-P system in three dimensions
in [7], i.e., the corresponding linear transport flow

∂tf + v · ∇xf = 0

cannot be used as an approximate flow for the nonlinear dynamics of (1.1) in a
large-time regime. This might suggest a possible scenario of L1-instability of small
solutions to the Vlasov-Poisson system in three dimensions. Of course, this paper
do not resolve this issue completely, but our result in this paper suggests that in
general, the uniform L1-stability is not true for smooth solutions(see Remark 1.1).
Therefore, suitable smallness assumption on initial data is crucially needed, if we
want to have the uniform L1-stability of the V-P system. In contrast, for some regu-
larized V-P systems such as the V-Y system and the Vlasov-Poisson-Fokker-Planck
system, the uniform L1-stability was obtained for small and decaying solutions in
three dimensions [12, 13]. Hence the V-P system in three dimensions lies on the bor-
der line from the viewpoint of L1-stability among self-consistent nonlinear Vlasov
equations.

The main result of this paper is the Lp-instability of smooth stationary solution
with a compact support.

Theorem 1.1. Let f0 = f0(x, v) be a C1
c -stationary solution to system (1.1). Then

for any ε > 0 and p ∈ [1,∞], there exists a smooth perturbation f in of f0 and

T = T (ε) > 0 such that the smooth solution f = f(t) with initial datum f in

satisfies

||f in − f0||Lp(R6) < ε and ||f(t)− f0||Lp(R6) = 21/p||f0||Lp(R6), t ≥ T = T (ε).


