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MONOTONE RELAXATION ITERATES AND APPLICATIONS

TO SEMILINEAR SINGULARLY PERTURBED PROBLEMS

IGOR BOGLAEV

(Communicated by Yau-Shu Wong )

Abstract. This paper deals with monotone relaxation iterates for solving nonlinear monotone dif-
ference schemes of elliptic type. The monotone ω-Jacobi and SUR (Successive Under-Relaxation)
methods are constructed. The monotone methods solve only linear discrete systems at each iter-
ative step and converge monotonically to the exact solution of the nonlinear monotone difference
schemes. Convergent rates of the monotone methods are estimated. The proposed methods are
applied to solving semilinear singularly perturbed reaction-diffusion problems. Uniform conver-
gence of the monotone methods is proved. Numerical experiments complement the theoretical
results.
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1. Introduction

Difference schemes, which satisfy the maximum principle, are said to be mono-
tone. The monotonicity condition guarantees that systems of algebraic equations
based on such difference schemes are well-posed.

A major point about the nonlinear monotone difference schemes is to obtain reli-
able and efficient computational methods for computing the solution. The reliability
of iterative techniques for solving nonlinear difference schemes can be essentially
improved by using componentwise monotone globally convergent iterations. Such
methods can be controlled every time. A fruitful method for the treatment of these
nonlinear schemes is the method of upper and lower solutions and its associated
monotone iterations [5]. Since an initial iteration in the monotone iterative method
is either an upper or lower solution, which can be constructed directly from the dif-
ference equation without any knowledge of the exact solution, this method simplifies
the search for the initial iteration as is often required in the Newton method. In the
context of solving systems of nonlinear equations, the monotone iterative method
belongs to the class of methods based on convergence under partial ordering (see
Chapter 13 in [5] for details).

The purpose of this paper is to extend the monotone iterative method from [3]
to monotone relaxation methods of Jacobi- and Gauss–Seidel-type iterations for
solving nonlinear monotone difference schemes in the canonical form.

The structure of the paper is as follows. In Section 2, we present the nonlinear
monotone difference schemes in the canonical form and formulate the maximum
principle. In Section 3, we construct the monotone ω-Jacobi and SUR (Successive
Under-Relaxation) methods and prove their monotone convergence. Section 4 is
devoted to estimation of convergent rates of the monotone methods. In the fi-
nal Section 5, the monotone methods are applied to solving singularly perturbed
reaction-diffusion problems. We prove that on layer-adapted meshes the monotone
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methods converge uniformly in perturbation parameters. Numerical experiments
complement the theoretical results.

2. A nonlinear difference scheme

Let Ω be a bounded computational domain in R
k (k = 1, 2, . . .) and Ω

h
be a

corresponding mesh. For a k-dimensional mesh function v(p), p ∈ Ω
h
, consider the

nonlinear difference scheme in the canonical form [6]

(1) Lv(p) + f(p, v) = 0, p ∈ Ωh, v(p) = g(p), p ∈ ∂Ωh,

Lv(p) ≡ d(p)v(p) −
∑

p
′
∈σ

′ (p)

e(p, p
′

)v(p
′

),

where Ω
h
= Ωh ∪ ∂Ωh, σ

′

(p) = σ(p) \ {p}, σ(p) is a stencil of the scheme at an

interior mesh point p ∈ Ωh and ∂Ωh is the boundary of Ω
h
. We assume that f is

a smooth function, and make the following assumptions on the coefficients of the
difference operator L:

(2) d(p) > 0, e(p, p
′

) ≥ 0, d(p)−
∑

p
′
∈σ

′ (p)

e(p, p
′

) ≥ 0, p ∈ Ωh.

We also assume that the mesh Ω
h
is connected. It means that for two interior

mesh points p̃ and p̂, there exists a finite set of interior mesh points {p1, p2, . . . , pt}
such that

(3) p1 ∈ σ
′

(p̃), p2 ∈ σ
′

(p1), . . . , pt ∈ σ
′

(pt−1), p̂ ∈ σ
′

(pt).

Introduce the linear version of problem (1)

(4) (L+ c)w(p) = f0(p), p ∈ Ωh,

w(p) = g(p), p ∈ ∂Ωh, c(p) ≥ 0, p ∈ Ω
h
.

We now formulate a discrete maximum principle for the difference operator L+ c.

Lemma 1. Let the coefficients of the difference operator L from (4) satisfy (2) and

the mesh Ω
h
be connected (3). If a mesh function w(p) satisfies the conditions

(L+ c)w(p) ≥ 0 (≤ 0), p ∈ Ωh, w(p) ≥ 0 (≤ 0), p ∈ ∂Ωh,

then w(p) ≥ 0 (≤ 0), p ∈ Ω
h
.

The proof of the lemma can be found in [6].

3. Monotone iterative methods

Assume that f(p, v) from (1) satisfies the two-sided constraint

(5) c∗ ≤ fv(p, v) ≤ c∗, (p, v) ∈ Ω
h × (−∞,∞), (fv ≡ ∂f/∂v),

where c∗ and c∗ are positive constants.
We say that v(p) is an upper solution of (1) if it satisfies the inequalities

Lv(p) + f(p, v) ≥ 0, p ∈ Ωh, v ≥ g on ∂Ωh.

Similarly, v(p) is called a lower solution if it satisfies all the reversed inequalities.
Upper and lower solutions satisfy the inequality

(6) v(p) ≤ v(p), p ∈ Ω
h
.


